随机变量的数字特征

数学期望

离散型

离散型随机变量 X X 分布律为:

P{X=xk}=pk,k=1,2,

级数

k=1xkpk ∑ k = 1 ∞ x k p k

绝对收敛,则称级数 k=1xkpk ∑ k = 1 ∞ x k p k 的和为随机变量 X X 数学期望,即为E(X)
即:
E(X)=k=1xkpk E ( X ) = ∑ k = 1 ∞ x k p k

连续型

连续型随机变量 X X 概率密度f(x),若积分

+xf(x)dx ∫ − ∞ + ∞ x f ( x ) d x

绝对收敛,则称积分 +xf(x)dx ∫ − ∞ + ∞ x f ( x ) d x 的值为变量 X X 数学期望,记为E(X),即:
E(x)=+xf(x)dx E ( x ) = ∫ − ∞ + ∞ x f ( x ) d x

数学期望简称期望,又称均值
数学期望 E(X) E ( X ) 完全由随机变量 X X 的概率分布所确定。若X服从某一分布,也称 E(X) E ( X ) 是这一分布的数学期望。

定理:

Y Y 是随机变量X的函数: Y=g(X) Y = g ( X ) g g 是连续函数)
(I)如果 X X 离散型随机变量,它的分布律P{X=xk}=pk,k=1,2,,若 k=1g(xk)pk ∑ k = 1 ∞ g ( x k ) p k 绝对收敛,则有:

E(Y)=E[g(X)]=k=1g(xk)pk E ( Y ) = E [ g ( X ) ] = ∑ k = 1 ∞ g ( x k ) p k

(II) ( I I ) 如果 X X 连续型随机变量,它的概率密度为f(x),若 g(x)f(x)dx ∫ − ∞ ∞ g ( x ) f ( x ) d x 绝对收敛,则有:
E(Y)=E[g(X)]=g(x)f(x)dx E ( Y ) = E [ g ( X ) ] = ∫ − ∞ ∞ g ( x ) f ( x ) d x

方差

方差是为了研究随机变量与其均值的偏离程度。

E{|XE(X)|} E { | X − E ( X ) | }

能够度量随机变量与其均值的偏离程度。但是由于上式带有绝对值,运算不方便,于是为了运算方便起见。通常使用
E{[XE(X)]2} E { [ X − E ( X ) ] 2 }
来度量随机变量 X X 与其均值E(X)偏离程度

定义:

X X 是一个随机变量,若E{[XE(X)]2}存在,则称 E{[XE(X)]2} E { [ X − E ( X ) ] 2 } X X 方差,记为D(X) Var(X) V a r ( X ) ,即:

D(X)=Var(x)=E{[XE(X)]2} D ( X ) = V a r ( x ) = E { [ X − E ( X ) ] 2 }
在应用上还引入量 D(X) D ( X ) ,记为 σ(X) σ ( X ) 称为标准差均方差
由定义而言方差就是随机变量 X X 的函数g(X)=[XE(X)]2的数学期望
于是对于离散型随机变量有:
D(X)=k=1[xkE(X)]2pk D ( X ) = ∑ k = 1 ∞ [ x k − E ( X ) ] 2 p k

其中 P{X=xk}=pk,k=1,2, P { X = x k } = p k , k = 1 , 2 , ⋯ X X 的分布律
对于连续型随机变量有:
D(X)=[xE(X)]2f(x)dx
其中 f(x) f ( x ) X X 的概率密度
随机变量X的方差可以按照以下公式计算:
D(X)=E(X2)[E(X)]2 D ( X ) = E ( X 2 ) − [ E ( X ) ] 2

标准化变量

设随机变量 X X 具有数学期望E(X)=μ,方差 D(X)=σ20 D ( X ) = σ 2 ≠ 0 记:

X=Xμσ X ∗ = X − μ σ

E(X)=1σE(Xμ)==1σ[E(X)μ]=0 E ( X ∗ ) = 1 σ E ( X − μ ) == 1 σ [ E ( X ) − μ ] = 0

D(X)=E(X2)[E(X)]2=E[(Xμσ)2]=1σ2E[(Xμ)2]=σ2σ2=1 D ( X ∗ ) = E ( X ∗ 2 ) − [ E ( X ∗ ) ] 2 = E [ ( X − μ σ ) 2 ] = 1 σ 2 E [ ( X − μ ) 2 ] = σ 2 σ 2 = 1

方差的几个重要性质:
1 1 ∘

C C 是常数,则D(C)=0
2 2 ∘

X X 是随机变量,C是常数,则有

D(CX)=C2D(X),D(X+C)=D(X) D ( C X ) = C 2 D ( X ) , D ( X + C ) = D ( X )

3 3 ∘

X,Y X , Y 是两个随机变量,则有

D(X+Y)=D(X)+D(Y)+2E{(XE(X))(YE(Y))} D ( X + Y ) = D ( X ) + D ( Y ) + 2 E { ( X − E ( X ) ) ( Y − E ( Y ) ) }

特别的若 X,Y X , Y 相互独立,则有
D(X+Y)=D(X)+D(Y) D ( X + Y ) = D ( X ) + D ( Y )

4 4 ∘

D(X)=0 D ( X ) = 0 充分必要条件 X X 以概率为1取常数 E(X) E ( X ) ,即:

P{X=E(X)}=1 P { X = E ( X ) } = 1

协方差及相关系数

在方差的性质 3 3 ∘ 中,如果两个随机变量 X X Y相互独立则: E{(XE(X))(YE(Y))}=0 E { ( X − E ( X ) ) ( Y − E ( Y ) ) } = 0 这意味着如果 E{(XE(X))(YE(Y))}0 E { ( X − E ( X ) ) ( Y − E ( Y ) ) } ≠ 0 X X Y不相互独立,而是存在一定的关系。
定义:
E{(XE(X))(YE(Y))} E { ( X − E ( X ) ) ( Y − E ( Y ) ) } 称为随机变量 X X Y的协方差,记为 Cov(X,Y) C o v ( X , Y ) ,即:

Cov(X,Y)=E{(XE(X))(YE(Y))} C o v ( X , Y ) = E { ( X − E ( X ) ) ( Y − E ( Y ) ) }
而: ρXY=CovXYD(X)D(Y) ρ X Y = C o v X Y D ( X ) D ( Y ) 称为变量 X X Y相关系数
由定义:
Cov(X,Y)=Cov(Y,X);Cov(X,X)=D(X) C o v ( X , Y ) = C o v ( Y , X ) ; C o v ( X , X ) = D ( X )

协方差性质:
1 1 ∘ : Cov(aX,bY)=abCov(X,Y) C o v ( a X , b Y ) = a b C o v ( X , Y )
2 2 ∘ : Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y) C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y )

ρXY ρ X Y 性质:

1 1 ∘ : |ρXY|1 | ρ X Y | ≤ 1
2 2 ∘ : |ρXY|=1 | ρ X Y | = 1 的充分必要条件是,存在常数 a,b a , b 使得:

P{Y=a+bX}=1 P { Y = a + b X } = 1

3 3 ∘ |ρXY|=0 | ρ X Y | = 0 X X Y不相关

矩,协方差矩阵

定义:

X X Y随机变量


若:

E(Xk),k=1,2, E ( X k ) , k = 1 , 2 , ⋯

存在,称它为 X X k阶原点矩,简称 k k 阶矩


E{[XE(X)]k},k=2,3,

存在,则称它为 X X k阶中心矩


E(XkY),k,=1,2, E ( X k Y ℓ ) , k , ℓ = 1 , 2 , ⋯

存在,称它为 X X Y k+ k + ℓ 阶混合矩


E{[XE(X)]k[YE(Y)]},k,=1,2, E { [ X − E ( X ) ] k [ Y − E ( Y ) ] ℓ } , k , ℓ = 1 , 2 , ⋯

存在,则称它为 X X Y k+ k + ℓ 阶混合中心矩

协方差矩阵

2 2

二维随机变量(X1,X2)四个二阶中心矩(假设都存在),分别记为:

c11c12c21c22=E{[X1E(X1)]2}=E{[X1E(X1)]}E{[X2E(X2)]}=E{[X2E(X2)]}E{[X1E(X1)]}=E{[X2E(X2)]2} c 11 = E { [ X 1 − E ( X 1 ) ] 2 } c 12 = E { [ X 1 − E ( X 1 ) ] } E { [ X 2 − E ( X 2 ) ] } c 21 = E { [ X 2 − E ( X 2 ) ] } E { [ X 1 − E ( X 1 ) ] } c 22 = E { [ X 2 − E ( X 2 ) ] 2 }

把它们排列成矩阵形式:
(c11c21c12c22) ( c 11 c 12 c 21 c 22 )

这个矩阵称为随机变量 (X1,X2) ( X 1 , X 2 ) 协方差矩阵
n n
n维随机变量 (X1,X2,,Xn) ( X 1 , X 2 , ⋯ , X n ) 二阶混合中心矩
cij=Cov(Xi,Xj)=E{[XiE(Xi)]}E{[XjE(Xj)]},i,j=1,2,,n c i j = C o v ( X i , X j ) = E { [ X i − E ( X i ) ] } E { [ X j − E ( X j ) ] } , i , j = 1 , 2 , ⋯ , n
都存在,则称矩阵
C=c11c21cn1c12c22cn2c1nc2ncnn C = ( c 11 c 12 ⋯ c 1 n c 21 c 22 ⋯ c 2 n ⋮ ⋮ ⋱ ⋮ c n 1 c n 2 ⋯ c n n )
n n 维随机变量(X1,X2,,Xn)协方差矩阵。由于 cij=cji,(ij;i,j=1,2,,n) c i j = c j i , ( i ≠ j ; i , j = 1 , 2 , ⋯ , n ) 而上述矩阵是一个对称矩阵

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值