【人工智能的数学基础】行列式点过程(Determinantal Point Process)

行列式点过程(DPP)是机器学习中解决子集选择问题的工具,确保选择的样本具有多样性。它通过半正定的核矩阵K定义,其中K的主子式决定了子集的概率。DPP可用于质量-多样性分解,便于同时考虑采样质量和多样性。此外,DPP可以扩展到条件DPP和k-DPP,分别处理依赖输入的子集和固定大小的子集选择问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Determinantal Point Process.

本文目录:

  1. 行列式点过程的定义
  2. 通过L-ensemble构造核矩阵
  3. 初等行列式点过程 Elementary DPPs
  4. 质量-多样性分解 quality-diversity decomposition
  5. 其他类型的行列式点过程

1. 行列式点过程的定义

在机器学习中,**行列式点过程 (determinantal point process, DPP)是一种解决子集选择问题的方法,即从样本集合中选择具有多样性(diversity)**的一个子集。DPP赋予该子集上的分布能够使得选择两个相似程度较高样本的概率是负相关的,即越相似的样本越不容易被同时采样到。

一般地,行列式点过程

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值