作者:禅与计算机程序设计艺术
文章目录
1. 背景介绍
近年来,随着移动互联网、智能手环、手游的发展,物联网终端设备的普及率逐渐提升,对视频处理、图像识别等计算密集型任务的需求也越来越强烈。在这种情况下,高速并行计算能力(Graphics Processing Unit)显得尤其重要。为了加快处理速度,科技公司都选择部署基于图形处理器(Graphics Processing Unit,GPU)的系统,而设计更快、更省电的算法也是提升处理效率的一个关键因素。但是,由于传统GPU设计中存在很多限制导致处理性能不够高,如同时支持多线程执行的核的数量有限、带宽受限等,因此,如何设计更好的GPU并行算法以及优化其性能成为许多研究人员和工程师面临的课题。本文将从以下几个方面进行分析和讨论:
① GPU工作原理和特点;
② GPU编程模型;
③ CUDA编程语言及运行机制;
④ CPU-GPU并行编程模型及流程;
⑤ GPU内存访问模式;
⑥ GPU架构设计;
⑦ GPU并行编程优化方法;
⑧ GPU编程实践经验总结。
通过对以上几方面的研究、观察和分析,本文试图回答如下几个问题:
1.为什么要用GP