实例讲解Pandas和Scikit-learn的用法

本文详细介绍了使用Pandas和Scikit-learn进行数据预处理的步骤,包括Pandas的Series和DataFrame操作,处理缺失值、异常值,以及编码分类变量。还涵盖了特征缩放、训练集测试集划分、处理不平衡数据集、交叉验证、特征选择、模型选择和超参数调优。最后通过天气预测数据展示了实际操作过程。
摘要由CSDN通过智能技术生成

作者:禅与计算机程序设计艺术

1.简介

数据预处理(Data Preprocessing)是数据科学的一个重要环节,数据预处理将源数据转换成训练模型所需的结构化、易于分析的数据形式,并对缺失值、异常值进行处理,使得数据具有更好的质量、有效性和可预测性。数据预处理也是许多机器学习算法的前置条件。Pandas和Scikit-learn都是Python中的两个最流行的数据处理库。在本文中,我们将介绍Pandas和Scikit-learn工具包,以及它们如何处理数据的预处理任务。
本教程面向数据科学初学者,希望通过一系列简单易懂的实例讲解Pandas和Scikit-learn的用法,从而帮助读者快速上手。

2.基本概念术语说明

2.1 Panda Series

Panda series 是pandas中的一种数据结构,类似于R语言中的数据框。它是一个带有标签的数组,其中标签用于索引。它可以存储不同类型的数据(数值、字符串、布尔值等)。对于数据预处理来说,series特别方便,因为它们提供了很多函数用来处理和清洗数据。每个series都有一个名称、索引和值的组成。如下面的代码示例所示:

import</
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值