作者:禅与计算机程序设计艺术
1.简介
数据预处理(Data Preprocessing)是数据科学的一个重要环节,数据预处理将源数据转换成训练模型所需的结构化、易于分析的数据形式,并对缺失值、异常值进行处理,使得数据具有更好的质量、有效性和可预测性。数据预处理也是许多机器学习算法的前置条件。Pandas和Scikit-learn都是Python中的两个最流行的数据处理库。在本文中,我们将介绍Pandas和Scikit-learn工具包,以及它们如何处理数据的预处理任务。
本教程面向数据科学初学者,希望通过一系列简单易懂的实例讲解Pandas和Scikit-learn的用法,从而帮助读者快速上手。
2.基本概念术语说明
2.1 Panda Series
Panda series 是pandas中的一种数据结构,类似于R语言中的数据框。它是一个带有标签的数组,其中标签用于索引。它可以存储不同类型的数据(数值、字符串、布尔值等)。对于数据预处理来说,series特别方便,因为它们提供了很多函数用来处理和清洗数据。每个series都有一个名称、索引和值的组成。如下面的代码示例所示:
import</