作者:禅与计算机程序设计艺术
1.简介
2015年ImageNet大赛刚结束时, Hinton团队提出了“深层网络”的概念,即用训练好的多层神经网络来进行特征提取的技术。随着深度学习技术的飞速发展,越来越多的研究者开始将其用于计算机视觉、自然语言处理、机器学习等领域。
2017年以来,深度学习技术不断取得新的突破,涌现出诸如CNN、RNN、GAN、Transformer、BERT、GPT-2等大量先进的模型。这些模型均可以解决复杂的问题,在某些方面甚至超过了传统机器学习方法。但是它们往往需要大量的训练数据才能获得良好的性能。
在实际应用中,我们经常遇到如下场景:
- 某个任务需要特定的模型结构(例如神经网络),但是没有足够的数据进行训练;
- 有大量可用数据,但这些数据并不能满足特定任务所需的复杂性。
在这种情况下,我们可以通过迁移学习的方法来解决这个问题。迁移学习就是指利用已有的模型或权重对当前任务进行训练,而不需要重新训练整个模型。通过迁移学习,我们可以快速地完成模型的训练,节省大量的时间成本。
迁移学习的主要方法包括: - 共享参数迁移学习:将源模型的参数复制到目标模型,直接使用目标模型进行训练;
- 特征抽取迁移学习:利用源模型对输入数据进行特征提取,再将这些