作者:禅与计算机程序设计艺术
1.简介
随着互联网蓬勃发展,电子商务网站如亚马逊、淘宝等不断涌现出越来越多的用户数据。这些数据对于企业来说无疑是至关重要的资源。有了这些数据之后,企业就可以对消费者行为进行分析,从而帮助他们更好的决策。
大数据时代给予企业更加强大的决策能力,促进了知识的发现与信息的传播。而在这过程中,一个重要的研究课题就是关联规则挖掘(又称为FP-growth)。
所谓关联规则,就是购买商品A而同时也喜欢购买商品B的顾客群体。FP-growth是一个高效的关联规则挖掘方法,能够在海量的数据中找到频繁项集及其频繁组合。
本文将以电影推荐系统中的FP-growth算法为例,详细阐述该算法的实现过程、原理、特点和优缺点。
2.背景介绍
2.1 数据集介绍
假设有一批用户参与了一项电影评分活动。每位用户都可以给不同的电影打出不同的分值,这些数据包含了以下信息:
- 用户ID:唯一标识符,每个用户都是独一无二的;
- 电影ID:代表电影的唯一标识符;
- 评分值:表示用户对电影的打分,范围通常在1到5之间。
假设有两部经典科幻片《盗梦空间》(Tomorrowland)和《银河护卫队