第6条博客标题:关联规则挖掘实战:电影推荐系统之FPGrowth算法

本文介绍了FP-growth算法在电影推荐系统中的应用,详细阐述了算法原理、操作步骤,包括FP树、概念树的构建以及频繁项集挖掘。通过关联规则挖掘,预测用户对电影的感兴趣程度,实现个性化推荐。
摘要由CSDN通过智能技术生成

作者:禅与计算机程序设计艺术

1.简介

随着互联网蓬勃发展,电子商务网站如亚马逊、淘宝等不断涌现出越来越多的用户数据。这些数据对于企业来说无疑是至关重要的资源。有了这些数据之后,企业就可以对消费者行为进行分析,从而帮助他们更好的决策。

大数据时代给予企业更加强大的决策能力,促进了知识的发现与信息的传播。而在这过程中,一个重要的研究课题就是关联规则挖掘(又称为FP-growth)。

所谓关联规则,就是购买商品A而同时也喜欢购买商品B的顾客群体。FP-growth是一个高效的关联规则挖掘方法,能够在海量的数据中找到频繁项集及其频繁组合。

本文将以电影推荐系统中的FP-growth算法为例,详细阐述该算法的实现过程、原理、特点和优缺点。

2.背景介绍

2.1 数据集介绍

假设有一批用户参与了一项电影评分活动。每位用户都可以给不同的电影打出不同的分值,这些数据包含了以下信息:

  • 用户ID:唯一标识符,每个用户都是独一无二的;
  • 电影ID:代表电影的唯一标识符;
  • 评分值:表示用户对电影的打分,范围通常在1到5之间。

假设有两部经典科幻片《盗梦空间》(Tomorrowland)和《银河护卫队

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 8
    评论
项目完整可用,配合压缩包内数据库可直接运行使用。 eclipse+mysql5.7+jdk1.8 功能:推荐引擎利用特殊的信息过滤(IF,Information Filtering)技术,将不同的内容(例如电影、音乐、书籍、新闻、图片、网页等)推荐给可能感兴趣的用户。通常情况下,推荐引擎的实现是通过将用户的个人喜好与特定的参考特征进行比较,并试图预测用户对一些未评分项目的喜好程度。参考特征的选取可能是从项目本身的信息中提取的,或是基于用户所在的社会或社团环境。 根据如何抽取参考特征,我们可以将推荐引擎分为以下四大类: • 基于内容的推荐引擎:它将计算得到并推荐给用户一些与该用户已选择过的项目相似的内容。例如,当你在网上购书时,你总是购买与历史相关的书籍,那么基于内容的推荐引擎就会给你推荐一些热门的历史方面的书籍。 • 基于协同过滤的推荐引擎:它将推荐给用户一些与该用户品味相似的其他用户喜欢的内容。例如,当你在网上买衣服时,基于协同过滤的推荐引擎会根据你的历史购买记录或是浏览记录,分析出你的穿衣品位,并找到与你品味相似的一些用户,将他们浏览和购买的衣服推荐给你。 • 基于关联规则的推荐引擎:它将推荐给用户一些采用关联规则发现算法计算出的内容。关联规则的发现算法有很多,如 Apriori、AprioriTid、DHP、FP-tree 等。 • 混合推荐引擎:结合以上各种,得到一个更加全面的推荐效果。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

光剑书架上的书

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值