作者:禅与计算机程序设计艺术
1.简介
长短时记忆网络(Long Short-Term Memory networks,LSTM)是一个受到Hochreiter & Schmidhuber(1997)、Gers et al.(1999)等人的启发而提出的递归神经网络模型。传统RNN在处理时间序列数据时存在梯度爆炸或梯度消失的问题,导致其性能不稳定。LSTM通过引入门控机制来解决这个问题。本文主要对LSTM进行改进,在保留了LSTM的长期记忆特性的同时,增加了可解释性特征的学习。
2.相关研究
时间序列预测任务是监督学习中非常重要的一项任务。目前已有的一些时间序列预测方法主要基于多层感知机MLP、卷积神经网络CNN、循环神经网络RNN。然而,这些方法均面临着过拟合或欠拟合的问题,并且难以解释。
长短时记忆网络LSTM是一种递归神经网络模型,其特点是具有长期记忆的能力,能够捕获序列的整体性,并通过门控制单元来实现动态学习。目前比较成功的是基于LSTM的股票价格预测任务。
针对LSTM在时间序列预测任务中的不足,提出了一种改进方案——将LSTM与一种可解释特征学习模型相结合,这种模型可以将时间序列中某些重要特征提取出来,帮助LSTM进行更好的时间序列预测。主要有三种模型:因子分析法、随机游走模型、支持向量机。
除此之外,还可以基于LSTM的输出来探索隐含变量的相关性,从而发现隐藏的时间模式或结构。
综上所述,随着深度学习的广泛应用,关于时间序列预测的论文及文章数量逐渐增多,而相应的方法也越来越成熟。因此,深度学习与时间序列预测的结合对时间序列预测任务来说是一个非常有前景的研究方向。

本文介绍了结合可解释性特征学习的LSTM模型,用于改进时间序列预测。通过引入因子分析法、随机游走模型和支持向量机,模型能提取时间序列中的关键特征,提高LSTM的预测能力。此外,文章详细讲解了LSTM的基础知识,包括其门控机制和编码器-解码器结构。
订阅专栏 解锁全文
828

被折叠的 条评论
为什么被折叠?



