Understanding LSTM Networks——理解LSTM网络

深入解析LSTM网络:原理与实现
本文详细介绍了LSTM(长短期记忆网络),旨在解决RNN的长期依赖问题。文章涵盖了LSTM的基本概念,如记忆细胞、门结构、遗忘门、输出门,以及LSTM的网络结构和训练方法。通过具体的numpy实现,帮助读者理解和应用LSTM网络。

作者:禅与计算机程序设计艺术

1.简介

LSTM (Long Short-Term Memory) 是一种基于RNN (Recurrent Neural Network) 的循环神经网络,其目的是解决长期依赖的问题。它使用门结构来控制信息流的通道,并将这种结构与记忆细胞一起组合在一起,以更好地学习长期依赖的信息。通过引入LSTM,可以有效地解决梯度消失和梯度爆炸的问题,进而提高模型训练的效率。本文通过对LSTM网络的基本原理、结构、算法等进行系统性阐述,力求让读者能对LSTM网络有一个清晰、全面和易于理解的认识。本文涉及的内容包括:1)基本概念(如记忆细胞、门结构、遗忘门、输出门),2)LSTM网络基本结构,3)循环神经网络与LSTM之间的联系,4)LSTM网络的输入输出以及训练方法,5)LSTM网络的应用举例。希望读者能够从本文中得到一定的收获,并在实际应用中用到LSTM网络来解决复杂任务。

2.基本概念

(1)记忆细胞(Memory Cell)

LSTM 中最重要的一个模块就是“记忆细胞”(memory cell)。它是一个存储记忆信息的神经元,包括四个门结构(输入门、遗忘门、输出门和更新门),它们的作用如下图所示:

  1. 输入门(input gate):当LSTM看到一个新的输入时,它会决定某些信息应该进入到记忆细胞中。它的计算方式为:

    it=σ(Wixxt+Wi

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

禅与计算机程序设计艺术

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值