作者:禅与计算机程序设计艺术
1.简介
什么是模型压缩?为什么要进行模型压缩呢?有哪些类型的模型压缩方法?本文将详细介绍一下模型压缩的相关知识。
模型压缩(model compression)是一种广义上的优化方法,目的是为了减少神经网络(NN)的体积、参数数量或者延迟时间,从而达到提高神经网络推理速度、节省存储空间等目的。
在深度学习中,训练得到的模型往往过于复杂,占用大量的内存和计算资源。因此,在实际应用中,需要对模型大小、计算开销进行一些程度上的压缩,来减小模型的体积、加快推理速度或实现更精确的效果。这就是模型压缩的目的。模型压缩可以分为以下几种类型:
- 技术性模型压缩:通过改变模型结构、超参数或其他方式减少模型的非线性复杂度,从而降低模型的规模。如通过裁剪模型权重、删除冗余层等方式。
- 算法性模型压缩:通过改变模型的参数取值、神经元激活函数或其他算法因素,减小模型的误差,从而提升模型的精度。如通过剪枝、量化等方式。
- 工程性模型压缩:通过对原始模型进行改进、压缩、优化或部署,从而减少模型大小、延迟时间、内存占用或推理性能损失。如通过剪枝、量化后的模型优化或量化部署等。
为什么要进行模型压缩呢?首先,因为模型越大,所需的时间、内存和计算资源就越多&#x