1.背景介绍
自然语言理解 (Natural Language Understanding, NLU) 是自然语言处理 (Natural Language Processing, NLP) 中的一个重要分支,它的目标是让计算机理解人类语言。语义角色标注 (Semantic Role Labeling, SRL) 是 NLU 的一个重要任务,它的目标是识别句子中词语的语义角色,从而揭示句子的语义结构。
背景介绍
NLU 是 NLP 的高层次抽象,它关注的是计算机理解人类语言的意思,而不仅仅是形式上的匹配。SRL 是 NLU 中的一个重要任务,它可以帮助计算机理解句子的语义结构,从而完成更多复杂的 NLP 任务,例如情感分析、问答系统等。
核心概念与联系
SRL 的基本思想是将句子中的词语分为几种语义角色,例如动作、承担者、工具、时间、地点等。SRL 的输入是已经分好词的句子,输出是每个词语的语义角色。SRL 的核心概念包括:
- 语义帧 (semantic frame):语义帧是一种固定的语义结构,它描述了一个动作和相关的语义角色。例如,“John ate an apple” 可以被视为一个 eating 的语义帧,其中 John 是动作的承担者,apple 是被吃的东西。
- 语义角色 (semantic role):语义角色是语义帧中的一种特