第二十一章:自然语言理解与语义角色标注

本文介绍了自然语言理解(NLU)的重要任务——语义角色标注(SRL),阐述了SRL在揭示句子语义结构中的作用。讨论了基于规则和基于机器学习的SRL算法,以及它们在问答系统、信息抽取和情感分析等场景的应用。并推荐了spaCy、NLTK等NLP工具资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.背景介绍

自然语言理解 (Natural Language Understanding, NLU) 是自然语言处理 (Natural Language Processing, NLP) 中的一个重要分支,它的目标是让计算机理解人类语言。语义角色标注 (Semantic Role Labeling, SRL) 是 NLU 的一个重要任务,它的目标是识别句子中词语的语义角色,从而揭示句子的语义结构。

背景介绍

NLU 是 NLP 的高层次抽象,它关注的是计算机理解人类语言的意思,而不仅仅是形式上的匹配。SRL 是 NLU 中的一个重要任务,它可以帮助计算机理解句子的语义结构,从而完成更多复杂的 NLP 任务,例如情感分析、问答系统等。

核心概念与联系

SRL 的基本思想是将句子中的词语分为几种语义角色,例如动作、承担者、工具、时间、地点等。SRL 的输入是已经分好词的句子,输出是每个词语的语义角色。SRL 的核心概念包括:

  • 语义帧 (semantic frame):语义帧是一种固定的语义结构,它描述了一个动作和相关的语义角色。例如,“John ate an apple” 可以被视为一个 eating 的语义帧,其中 John 是动作的承担者,apple 是被吃的东西。
  • 语义角色 (semantic role):语义角色是语义帧中的一种特
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值