1. 背景介绍
1.1 边缘计算的崛起
随着物联网、智能家居、自动驾驶等技术的快速发展,边缘计算逐渐成为了一个热门的研究领域。边缘计算是一种将计算任务从云端迁移到离数据源更近的设备上的技术,这样可以减少数据传输的延迟,提高实时性,并降低对云端计算资源的依赖。然而,边缘设备通常具有较低的计算能力、存储空间和能源供应,因此需要对深度学习模型进行压缩和优化,以适应这些设备的资源限制。
1.2 模型压缩与优化的重要性
模型压缩与优化是一种在保持模型性能的同时,降低模型复杂度的技术。通过模型压缩与优化,我们可以将大型深度学习模型轻量化,使其能够在边缘设备上高效运行。这对于实现实时性能、降低能耗和提高用户体验具有重要意义。
2. 核心概念与联系
2.1 模型压缩
模型压缩是一种降低深度学习模型复杂度的技术,主要包括以下几种方法:
- 网络剪枝:通过移除模型中不重要的神经元或连接,降低模型的参数数量和计算量。
- 知识蒸馏:将大型模型的知识迁移到小型模型中,使小型模型能够在保持性能的同时,具有更低的计算复杂度。
- 量化:将模型参数的精度降低,以减少存储空间和计算量。
- 低秩分解&#