基于DQN的智能交通信号灯控制系统设计
关键词:深度强化学习、DQN、交通信号灯控制、智能交通系统
摘要:随着城市化进程的加快,交通拥堵问题日益严重,传统的基于定时的交通信号灯控制已经无法满足复杂多变的交通需求。本文提出了一种基于深度强化学习DQN算法的智能交通信号灯控制系统,能够根据实时的交通流量情况自适应调整信号灯时序,提高交通通行效率,缓解城市交通拥堵。文章首先介绍了DQN算法的基本原理,然后详细阐述了该系统的整体架构和关键技术模块,包括交通流量检测、状态表示、奖励函数设计、DQN模型训练等。最后,通过仿真实验验证了该系统的有效性和优越性。
文章目录
1. 背景介绍
1.1 目的和范围
随着城市化进程的加快,城市交通问题日益严重,传统的基于定时的交通信号灯控制已经无法满足复杂多变的交通需求。为了提高交通通行效率,缓解城市交通拥堵,迫切需要开发智能化的交通信号灯控制系统。本文提出了一种基于深度强化学习DQN算法的智能交通信号灯控制系统,能够根据实时的交通流量情况自适应调整信号灯时序,提高交通通行效率。
1.2 预期读者
本文面向对智能交通系统、深度强化学习感兴趣的读者,包括但不限于:
- 交通工程师和规划师
- 人工智能和机器学习研究人员
- 智能交通系统开发工程师