1. 背景介绍
1.1 人工智能与决策优化
人工智能 (AI) 的核心目标之一是赋予机器做出智能决策的能力。从自动驾驶汽车到智能推荐系统,AI 已经在各个领域展现出其强大的决策能力。然而,传统的 AI 方法往往依赖于预定义的规则或大量的训练数据,难以应对复杂的动态环境和未知情况。
1.2 强化学习的兴起
强化学习 (Reinforcement Learning, RL) 作为一种机器学习范式,为 AI 代理在复杂环境中进行决策优化提供了新的思路。不同于监督学习和非监督学习,强化学习强调智能体通过与环境的交互来学习,通过试错的方式不断改进其决策策略,最终实现目标最大化。
1.3 强化学习应用于AI代理决策优化
强化学习在 AI 代理决策优化方面具有独特的优势:
- 适应动态环境: 强化学习能够处理动态变化的环境,并根据环境反馈调整决策策略。
- 探索与利用: 强化学习能够平衡探索未知状态空间和利用已知信息之间的关系,从而找到最优决策。
- 长期目标: 强化学习能够考虑长期目标,并做出有利于长期收益的决策。