1. 背景介绍
1.1. 循环神经网络 (RNN) 的局限性
循环神经网络 (RNN) 在处理序列数据方面取得了巨大的成功,例如自然语言处理、语音识别和时间序列预测等领域。然而,传统的 RNN 存在梯度消失和梯度爆炸问题,限制了它们在长序列数据上的性能。
1.2. 门控循环单元 (GRU) 的优势
门控循环单元 (GRU) 是一种改进的 RNN 架构,通过引入门控机制来解决梯度消失和梯度爆炸问题。GRU 使用更新门和重置门来控制信息流,从而更好地捕捉长距离依赖关系。
1.3. Keras 深度学习框架
Keras 是一个高级神经网络 API,它能够在 TensorFlow、CNTK 或 Theano 之上运行。Keras 提供了简单易用的 API,可以快速构建和训练深度学习模型,包括 GRU 模型。
2. 核心概念与联系
2.1. GRU 单元结构
GRU 单元包含三个门:
- 更新门 (Update Gate):控制前一时刻状态信息有多少被带入当前状态。
- 重置门 (Reset Gate):控制前一时刻状态信息有多少被忽略。</