神经网络学习小记录37——Keras实现GRU与GRU参数量详解

学习前言

我死了我死了我死了!
在这里插入图片描述

什么是GRU

GRU是LSTM的一个变种。

传承了LSTM的门结构,但是将LSTM的三个门转化成两个门,分别是更新门和重置门。

1、GRU单元的输入与输出

下图是每个GRU单元的结构。
在这里插入图片描述
在n时刻,每个GRU单元的输入有两个:

  • 当前时刻网络的输入值Xt
  • 上一时刻GRU的输出值ht-1

输出有一个:

  • 当前时刻GRU输出值ht

2、GRU的门结构

GRU含有两个门结构,分别是:

更新门zt和重置门rt

更新门用于控制前一时刻的状态信息被代入到当前状态的程度,更新门的值越大说明前一时刻的状态信息带入越少,这一时刻的状态信息带入越多。

重置门用于控制忽略前一时刻的状态信息的程度,重置门的值越小说明忽略得越多。

3、GRU的参数量计算

a、更新门

在这里插入图片描述
更新门在图中的标号为zt,需要结合ht-1和Xt来决定上一时刻的输出ht-1有多少得到保留,更新门的值越大说明前一时刻的状态信息保留越少,这一时刻的状态信息保留越多。

结合公式我们可以知道:在这里插入图片描述
zt由ht-1和Xt来决定。
在这里插入图片描述
当更新门zt的值较大的时候,上一时刻的输出ht-1保留较少,而这一时刻的状态信息保留较多。

W z 的 参 数 量 = ( x d i m + h d i m ) ∗ h d i m W_z的参数量 = (x_{dim} + h_{dim}) * h_{dim} Wz=(xdim+hdim)hdim
b z 的 参 数 量 = h d i m b_z的参数量 = h_{dim} bz=hdim
更新门的总参数量为:
总 参 数 量 = ( ( x d i m + h d i m ) ∗ h d i m + h d i m ) 总参数量 = ((x_{dim} + h_{dim}) * h_{dim} + h_{dim}) =((xdim+hdim)hdim+hdim)

b、重置门

在这里插入图片描述
重置门在图中的标号为rt,需要结合ht-1和Xt来控制忽略前一时刻的状态信息的程度,重置门的值越小说明忽略得越多。

结合公式我们可以知道:
在这里插入图片描述
rt由ht-1和Xt来决定。
在这里插入图片描述
当重置门rt的值较小的时候,上一时刻的输出ht-1保留较少,说明忽略得越多。

W t 的 参 数 量 = ( x d i m + h d i m ) ∗ h d i m W_t的参数量 = (x_{dim} + h_{dim}) * h_{dim} Wt=(xdim+hdim)hdim
b t 的 参 数 量 = h d i m b_t的参数量 = h_{dim} bt=hdim
W 的 参 数 量 = ( x d i m + h d i m ) ∗ h d i m W的参数量 = (x_{dim} + h_{dim}) * h_{dim} W=(xdim+hdim)hdim
b 的 参 数 量 = h d i m b的参数量 = h_{dim} b=hdim
重置门的总参数量为:
总 参 数 量 = 2 ∗ ( ( x d i m + h d i m ) ∗ h d i m + h d i m ) 总参数量 = 2*((x_{dim} + h_{dim}) * h_{dim} + h_{dim}) =2((xdim+hdim)hdim+hdim)

c、全部参数量

所以所有的门总参数量为:
总 参 数 量 = 3 ∗ ( ( x d i m + h d i m ) ∗ h d i m + h d i m ) 总参数量 = 3*((x_{dim} + h_{dim}) * h_{dim} + h_{dim}) =3((xdim+hdim)hdim+hdim)

在Keras中实现GRU

GRU一般需要输入两个参数。
一个是unit、一个是input_shape。

LSTM(CELL_SIZE, input_shape = (TIME_STEPS,INPUT_SIZE))

unit用于指定神经元的数量。
input_shape用于指定输入的shape,分别指定TIME_STEPS和INPUT_SIZE。

实现代码

import numpy as np
from keras.models import Sequential
from keras.layers import Input,Activation,Dense
from keras.models import Model
from keras.datasets import mnist
from keras.layers.recurrent import GRU
from keras.utils import np_utils
from keras.optimizers import Adam

TIME_STEPS = 28
INPUT_SIZE = 28
BATCH_SIZE = 50
index_start = 0
OUTPUT_SIZE = 10
CELL_SIZE = 75
LR = 1e-3

(X_train,Y_train),(X_test,Y_test) = mnist.load_data()
 
X_train = X_train.reshape(-1,28,28)/255
X_test = X_test.reshape(-1,28,28)/255

Y_train = np_utils.to_categorical(Y_train,num_classes= 10)
Y_test = np_utils.to_categorical(Y_test,num_classes= 10)

inputs = Input(shape=[TIME_STEPS,INPUT_SIZE])

x = GRU(CELL_SIZE, input_shape = (TIME_STEPS,INPUT_SIZE))(inputs)
x = Dense(OUTPUT_SIZE)(x)
x = Activation("softmax")(x)

model = Model(inputs,x)
adam = Adam(LR)
model.summary()
model.compile(loss = 'categorical_crossentropy',optimizer = adam,metrics = ['accuracy'])

for i in range(50000):
    X_batch = X_train[index_start:index_start + BATCH_SIZE,:,:]
    Y_batch = Y_train[index_start:index_start + BATCH_SIZE,:]
    index_start += BATCH_SIZE
    cost = model.train_on_batch(X_batch,Y_batch)
    if index_start >= X_train.shape[0]:
        index_start = 0
    if i%100 == 0:
        cost,accuracy = model.evaluate(X_test,Y_test,batch_size=50)
        print("accuracy:",accuracy)

实现效果:

10000/10000 [==============================] - 2s 231us/step
accuracy: 0.16749999986961484
10000/10000 [==============================] - 2s 206us/step
accuracy: 0.6134000015258789
10000/10000 [==============================] - 2s 214us/step
accuracy: 0.7058000019192696
10000/10000 [==============================] - 2s 209us/step
accuracy: 0.797899999320507
  • 23
    点赞
  • 154
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 22
    评论
Contraining-GRU(Constrained GRU)算法是一个变种的GRU循环神经网络,它是一种用于处理序列数据的神经网络模型,可以用于文本分类,情感分析,机器翻译等自然语言处理任务。与传统的GRU不同之处在于,Constrained-GRU增加了一些约束条件,可以更有效地避免模型过拟合的问题。 在训练Constrained-GRU模型时,需要设计多个约束条件,这些条件通常与数据的特性相关。常见的约束条件包括:权重范数约束,噪声鲁棒性方法,梯度约束等。下面我们详细介绍一下Constrained-GRUPython实现。 Contrained-GRU算法的Python实现步骤如下: 1.定义模型:首先定义Constrained-GRU模型的四个基本层。 ``` from keras.layers import Input, Embedding, Dense, GRU from keras.models import Model # 输入层 inputs = Input(shape=(None,)) # Embedding层 embedding = Embedding(input_dim=vocab_size, output_dim=embedding_dim)(inputs) # Constrained GRU层 constrained_gru = ConstrainedGRU(units=hidden_size, kernel_constraint=max_norm(constraint), recurrent_constraint=max_norm(constraint), bias_constraint=max_norm(constraint))(embedding) # Output层 outputs = Dense(output_dim=output_dim, activation='softmax')(constrained_gru) # 定义模型 model = Model(inputs=inputs, outputs=outputs) ``` 上述代码中,首先定义了输入层,其次使用Embedding层将输入数据转化为向量,然后使用Constrained-GRU层进行特征提取,最后连接输出层进行分类。 2.定义损失函数:使用交叉熵作为损失函数,目标是最小化损失函数。 ``` from keras.losses import categorical_crossentropy model.compile(optimizer=adam(), loss=categorical_crossentropy, metrics=['accuracy']) ``` 3.训练模型:使用训练集对模型进行训练。 ``` model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=epochs, batch_size=batch_size) ``` 4.评估模型:使用测试集对模型进行评估。 ``` score = model.evaluate(x_test, y_test, batch_size=batch_size) print('Test loss:', score[0]) print('Test accuracy:', score[1]) ``` 上面的代码中,我们使用测试集对模型的准确性进行评估。 至此,我们完成了Constrained-GRU算法的Python实现,可以用于文本分类,情感分析等自然语言处理任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bubbliiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值