Transformer在金融领域的应用实践分享
1.背景介绍
1.1 金融行业的挑战
金融行业一直是信息密集型行业,需要处理大量的结构化和非结构化数据,如新闻报告、研究报告、财务报表、交易数据等。传统的机器学习模型在处理这些数据时面临诸多挑战:
- 数据高度噪声和复杂
- 需要大量的特征工程
- 难以捕捉长期依赖关系
1.2 Transformer模型的兴起
2017年,Transformer模型在机器翻译任务中取得了突破性的成果,它完全基于注意力机制,摒弃了RNN/CNN等传统架构。Transformer具有并行计算、长期依赖捕捉能力强等优势,在自然语言处理领域取得了卓越的成绩。
1.3 Transformer在金融领域的应用潜力
由于金融数据的复杂性和长期依赖关系,Transformer模型在金融领域具有广阔的应用前景:
- 新闻情感分析和事件驱动分析
- 智能投资组合管理
- 金融风险管理
- 金融反欺诈等
2.核心概念与联系
2.1 Transformer模型架构
Transformer模型主要由编码器(Encoder)和解码器(Decoder)两部分组成: