1. 背景介绍
1.1 数据标注的困境
人工智能 (AI) 应用的蓬勃发展离不开海量数据的支持。然而,数据的获取和标注往往是 AI 应用落地的瓶颈。数据标注需要耗费大量的人力和时间,成本高昂。尤其在一些特定领域,例如医疗影像、自动驾驶等,需要专业人士进行标注,更增加了数据标注的难度。
1.2 迁移学习的兴起
迁移学习作为一种解决数据标注难题的有效方法,近年来备受关注。其核心思想是将已有的知识迁移到新的任务中,从而减少对标注数据的依赖。迁移学习在图像识别、自然语言处理等领域取得了显著的成果,为 AI 的发展带来了新的机遇。
1.3 自动标注的迁移学习
自动标注的迁移学习将迁移学习与自动标注技术相结合,旨在利用少量的标注数据和大量的未标注数据,自动完成数据的标注工作。这不仅可以降低数据标注的成本,还可以提高标注的效率和准确性。
2. 核心概念与联系
2.1 迁移学习
迁移学习是指利用已有的知识 (源域) 来帮助学习新的知识 (目标域)。源域和目标域可以是不同的数据集、不同的任务或不同的领域。迁移学习的关键在于找到源域和目标域之间的相似性,并将其有效地迁移到目标域中。
2.2 自动标注
自动标注是指利用机器