1. 背景介绍
1.1 大数据时代下的隐私保护挑战
随着互联网和信息技术的飞速发展,我们正处于一个前所未有的大数据时代。海量的数据被收集、存储和分析,为各行各业带来了巨大的机遇。然而,与此同时,数据隐私和安全问题也日益突出,成为了制约大数据应用发展的瓶颈。
传统的隐私保护方法,例如数据脱敏、匿名化等,往往会降低数据的可用性,难以满足实际应用需求。如何在保护数据隐私的同时,仍然能够充分利用数据价值,成为了亟待解决的难题。
1.2 同态加密和安全多方计算技术应运而生
同态加密(Homomorphic Encryption,HE)和安全多方计算(Secure Multi-Party Computation,MPC)是两种新兴的隐私保护技术,它们为解决大数据时代下的隐私保护挑战提供了新的思路和方法。
同态加密允许对加密数据进行计算,而无需解密。这意味着可以在不解密的情况下对数据进行分析和处理,从而有效保护数据隐私。
安全多方计算允许多个参与方在不泄露各自输入数据的情况下,共同计算一个函数的结果。这种技术可以应用于各种场景,例如联合数据分析、隐私保护机器学习等。