背景介绍
在深度学习和人工智能领域中,向量存储(Vector Store)和检索(Retriever)是构建强大问答系统和搜索引擎的关键组成部分。LangChain是一个强大的框架,它提供了许多工具和组件来帮助开发者快速构建复杂的深度学习系统。今天,我们将深入探讨如何使用LangChain来构建一个高效的向量存储和检索系统。我们将从基础概念到实际应用场景,全方位讲解LangChain编程的过程。
核心概念与联系
向量存储(Vector Store)是一种将数据(如文档、图像、音频等)存储为向量表示的系统。向量表示是一种将复杂的数据结构(如文本、图像等)映射为一组数值的方法,使得这些数值可以被计算机理解和处理。向量表示具有以下特点:
- 稀疏性: 大多数向量表示中的数值为0,这使得存储和处理向量表示变得高效。
- 向量化: 向量表示可以通过数学运算(如点积、叉积、模等)进行组合和比较,这使得向量表示可以被快速地处理和查询。
- 可缩放性: 向量表示可以通过学习向量空间的参数来实现,可扩展性强。
检索(Retriever)是一个系统,它可以根据查询来查找向量存储中的数据。检索系统的目标是找到与查询最相似的数据。检索系统通常使用一种称为"向量检索"的技术来实现。这是一种基于向量表示的数据结构和算法的组合,可以实现高效的数据查找和排序。
核心算法原理具体操作步骤
向量存储和检索的核心算法原理是基于向量表示和向量检索技术

本文深入探讨如何使用LangChain框架构建高效向量存储和检索系统,涉及核心概念如向量存储、向量检索,以及Word2Vec、BERT等向量表示方法,并给出实际项目代码实例和应用场景。
订阅专栏 解锁全文
319

被折叠的 条评论
为什么被折叠?



