【LangChain编程:从入门到实践】VectorStoreRetrieverMemory

本文深入探讨如何使用LangChain框架构建高效向量存储和检索系统,涉及核心概念如向量存储、向量检索,以及Word2Vec、BERT等向量表示方法,并给出实际项目代码实例和应用场景。

背景介绍

在深度学习和人工智能领域中,向量存储(Vector Store)和检索(Retriever)是构建强大问答系统和搜索引擎的关键组成部分。LangChain是一个强大的框架,它提供了许多工具和组件来帮助开发者快速构建复杂的深度学习系统。今天,我们将深入探讨如何使用LangChain来构建一个高效的向量存储和检索系统。我们将从基础概念到实际应用场景,全方位讲解LangChain编程的过程。

核心概念与联系

向量存储(Vector Store)是一种将数据(如文档、图像、音频等)存储为向量表示的系统。向量表示是一种将复杂的数据结构(如文本、图像等)映射为一组数值的方法,使得这些数值可以被计算机理解和处理。向量表示具有以下特点:

  1. 稀疏性: 大多数向量表示中的数值为0,这使得存储和处理向量表示变得高效。
  2. 向量化: 向量表示可以通过数学运算(如点积、叉积、模等)进行组合和比较,这使得向量表示可以被快速地处理和查询。
  3. 可缩放性: 向量表示可以通过学习向量空间的参数来实现,可扩展性强。

检索(Retriever)是一个系统,它可以根据查询来查找向量存储中的数据。检索系统的目标是找到与查询最相似的数据。检索系统通常使用一种称为"向量检索"的技术来实现。这是一种基于向量表示的数据结构和算法的组合,可以实现高效的数据查找和排序。

核心算法原理具体操作步骤

向量存储和检索的核心算法原理是基于向量表示和向量检索技术

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员光剑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值