1.背景介绍
在机器学习领域,梯度下降法是一种广泛应用于优化问题中的算法。它通过迭代的方式,在多维空间中寻找损失函数的最小值点,从而实现对模型参数的优化。随着数据科学的发展,梯度下降法已成为解决各种实际问题的重要工具之一。
2.核心概念与联系
损失函数
损失函数(Loss Function)是衡量模型预测值与真实值之间差异的函数。在机器学习中,我们通常希望最小化损失函数,以提高模型的预测性能。
优化算法
优化算法是用于寻找损失函数最小值点的算法。梯度下降法是优化算法中的一种,它通过计算损失函数关于参数的梯度,并沿着梯度的反方向进行迭代,以达到优化参数的目的。
梯度下降法
梯度下降法的核心思想是:从初始点出发,沿着负梯度方向逐步逼近损失函数的最小值。梯度下降法的迭代过程可以表示为:
$$ \theta_{i+1} = \theta_i - \alpha
abla J(\theta_i) $$
其中,$\theta_i$ 表示第 $i$ 次迭代的模型参数,$\alpha$ 为学习率(Learning Rate),$J(\theta_i)$ 为损失函数,$
abla J(\theta_i)$ 为损失函数关于参数的梯度。
3.核心算法原理具体操作步骤
初始化参数
在开始迭代之前,需要选择一个初始值作为参数的起点。这个值可以是随机的,也可以是根据问题特性确定的。<