基于数据挖掘的上市公司财务舞弊识别研究

本文探讨了如何运用数据挖掘技术识别上市公司财务舞弊。通过数据预处理、特征选择、模型训练和评估,建立预测模型。决策树算法在特征选择和生成中起到关键作用,有助于防止过拟合。此技术对投资决策、监管和审计有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.背景介绍

在现代社会,上市公司作为经济发展的重要组成部分,其财务信息的透明度和准确性对于投资者决策、市场稳定和社会公平都具有重要的影响。然而,财务舞弊现象却时有发生,严重损害了市场的公平性和投资者的利益。因此,如何有效地识别和预防财务舞弊成为了一个亟待解决的问题。

随着大数据和人工智能技术的发展,数据挖掘技术在财务舞弊识别中的应用越来越广泛。数据挖掘是一种从大量数据中发现有用信息和知识的技术,其目的是通过对数据的分析和处理,揭示数据背后的规律和模式。在财务舞弊识别中,数据挖掘技术可以帮助我们从大量的财务数据中提取有用的信息,建立有效的预测模型,从而更好地识别和预防财务舞弊。

2.核心概念与联系

在讨论基于数据挖掘的上市公司财务舞弊识别之前,我们需要理解几个核心概念:数据挖掘、财务舞弊、特征选择和分类模型。

2.1 数据挖掘

数据挖掘是一种从大量数据中发现有用信息和知识的技术。在财务舞弊识别中,数据挖掘的主要任务是通过对财务数据的分析和处理,揭示数据背后的规律和模式,为财务舞弊的预测和识别提供依据。

2.2 财务舞弊

财务舞弊是指上市公司通过虚假的财务报告,故意误导投资者,以获取不正当的利益。财务舞弊的形式多种多样,包括虚增收入、虚减成本、虚报资产等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值