多智能体强化学习 (MultiAgent Reinforcement Learning)

1. 背景介绍

强化学习 (Reinforcement Learning, RL) 是一种机器学习方法,它通过智能体与环境的交互来学习最优策略。在强化学习中,智能体通过观察环境的状态,采取行动并获得奖励,从而学习如何在不同的状态下采取最优的行动。强化学习已经在许多领域得到了广泛的应用,例如游戏、机器人控制、自然语言处理等。

然而,在许多实际应用中,我们需要处理多个智能体之间的交互。例如,在博弈中,每个玩家都是一个智能体,他们的行动会影响其他玩家的奖励。在机器人控制中,多个机器人需要协作完成任务。在这些情况下,我们需要使用多智能体强化学习 (Multi-Agent Reinforcement Learning, MARL) 来解决问题。

2. 核心概念与联系

多智能体强化学习是强化学习的一种扩展,它考虑了多个智能体之间的交互。在多智能体强化学习中,每个智能体都有自己的策略和价值函数,它们通过观察环境的状态和其他智能体的行动来学习最优策略。多智能体强化学习中的智能体可以是同质的,也可以是异质的。

在多智能体强化学习中,我们需要考虑以下几个核心概念:

  • 状态 (State):环境的状态,包括所有智能体的状态。
  • 行动 (Action):每个智能体可以采取的行动。
  • 奖励 (Rewa
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值