1. 背景介绍
强化学习 (Reinforcement Learning, RL) 是一种机器学习方法,它通过智能体与环境的交互来学习最优策略。在强化学习中,智能体通过观察环境的状态,采取行动并获得奖励,从而学习如何在不同的状态下采取最优的行动。强化学习已经在许多领域得到了广泛的应用,例如游戏、机器人控制、自然语言处理等。
然而,在许多实际应用中,我们需要处理多个智能体之间的交互。例如,在博弈中,每个玩家都是一个智能体,他们的行动会影响其他玩家的奖励。在机器人控制中,多个机器人需要协作完成任务。在这些情况下,我们需要使用多智能体强化学习 (Multi-Agent Reinforcement Learning, MARL) 来解决问题。
2. 核心概念与联系
多智能体强化学习是强化学习的一种扩展,它考虑了多个智能体之间的交互。在多智能体强化学习中,每个智能体都有自己的策略和价值函数,它们通过观察环境的状态和其他智能体的行动来学习最优策略。多智能体强化学习中的智能体可以是同质的,也可以是异质的。
在多智能体强化学习中,我们需要考虑以下几个核心概念:
- 状态 (State):环境的状态,包括所有智能体的状态。
- 行动 (Action):每个智能体可以采取的行动。
- 奖励 (Rewa