CNN的高级技术:BatchNormalization详解
作者:禅与计算机程序设计艺术
1. 背景介绍
1.1 深度学习的挑战
深度学习近年来取得了巨大的成功,这得益于其强大的特征提取能力和对复杂数据的建模能力。然而,深度神经网络的训练过程也面临着许多挑战,其中一个主要的挑战是 Internal Covariate Shift 问题。
1.2 Internal Covariate Shift问题
Internal Covariate Shift 指的是在训练过程中,由于网络参数的变化,导致每一层输入数据的分布不断发生变化的现象。这种现象会导致以下问题:
- 减缓训练速度: 由于每层输入数据的分布不断变化,网络需要不断调整参数以适应新的数据分布,这会减缓训练速度。
- 梯度消失/爆炸: 当输入数据的分布变化较大时,可能会导致梯度消失或爆炸,从而使得网络难以训练。
- 需要更小的学习率: 为了避免梯度消失/爆炸问题,通常需要使用更小的学习率,但这又会进一步减缓训练速度。
1.3 Batch Normalization的提出
为了解决 Internal Covariat