CNN的高级技术:BatchNormalization详解

CNN的高级技术:BatchNormalization详解

作者:禅与计算机程序设计艺术

1. 背景介绍

1.1 深度学习的挑战

深度学习近年来取得了巨大的成功,这得益于其强大的特征提取能力和对复杂数据的建模能力。然而,深度神经网络的训练过程也面临着许多挑战,其中一个主要的挑战是 Internal Covariate Shift 问题。

1.2 Internal Covariate Shift问题

Internal Covariate Shift 指的是在训练过程中,由于网络参数的变化,导致每一层输入数据的分布不断发生变化的现象。这种现象会导致以下问题:

  • 减缓训练速度: 由于每层输入数据的分布不断变化,网络需要不断调整参数以适应新的数据分布,这会减缓训练速度。
  • 梯度消失/爆炸: 当输入数据的分布变化较大时,可能会导致梯度消失或爆炸,从而使得网络难以训练。
  • 需要更小的学习率: 为了避免梯度消失/爆炸问题,通常需要使用更小的学习率,但这又会进一步减缓训练速度。

1.3 Batch Normalization的提出

为了解决 Internal Covariat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值