1. 背景介绍
1.1 强化学习与DQN
强化学习 (Reinforcement Learning, RL) 是一种机器学习方法,专注于训练智能体 (Agent) 通过与环境交互来学习做出最佳决策。智能体通过尝试不同的动作并观察环境的反馈 (奖励或惩罚) 来学习如何最大化长期累积奖励。深度 Q-学习 (Deep Q-Network, DQN) 是一种结合了深度学习和 Q-学习的 RL 算法,在许多领域取得了显著成果,如游戏、机器人控制和自然语言处理。
1.2 Q-学习与价值函数
Q-学习的核心思想是学习一个价值函数 (Value Function),该函数估计在特定状态下采取特定动作的预期未来奖励。价值函数用符号 Q(s, a) 表示,其中 s 是状态,a 是动作。DQN 使用深度神经网络来近似这个价值函数。
1.3 DQN 的挑战: 不稳定和发散
尽管 DQN 非常强大,但它也面临一些挑战,其中之一是不稳定性和发散性。这主要源于两个因素:
- 目标值 (Target Value) 的移动: 在 Q-学习中,目标值是根据当前状态和动作的 Q 值以及下一个状态的最大 Q 值计算的。由于 DQN 使用神经网络来近似 Q 值,因此目标值会随着网络参数的更新而不断变化,导致训练过程不稳定。
- 相关性 (Correlation): 在 DQN 中,用于选择动作的 Q 值和用于计算目标值的 Q 值都来自同一个网络。这导致了

订阅专栏 解锁全文
4154

被折叠的 条评论
为什么被折叠?



