强化学习算法(二)——深度Q网络DQN

Reference

[1] https://github.com/datawhalechina/easy-rl
[2] https://youtu.be/2-zGCx4iv_k

1. Critic

定义
用于评估给定策略(actor)好坏的网络,不用于直接选择动作。
在这里插入图片描述

1.1 State Value Function

定义
采取策略 π \pi π,在初始状态为s的情况下所能获得的累计奖励期望。
在这里插入图片描述
注意: 状态价值函数由策略 π \pi π和状态共同决定,它是用于衡量一个策略的好坏,而非状态的好坏(例如在相同状态下,采用的策略不同,所获得的状态价值也不相同)。
在强化学习(五)价值函数近似中我们学习了使用MC或TD方法采样预测真实的价值函数,下面我将进行简单的复习介绍。

1.1.1 MC

定义
采用策略 π \pi π与环境交互产生多条完整轨迹,利用每条完整轨迹的累计奖励与状态价值的差值更新状态价值,我们希望价值函数能够逐渐逼近真实的累计奖励,这是一个回归问题。
在这里插入图片描述
问题

  • 由于每次都要计算累积奖励,所以必须等待游戏结束才能更新网络,这样需要完整的轨迹,且花的时间太长。
  • 方差很大。本身具有随机性,累积奖励可以看成是一个随机变量。
    在这里插入图片描述

1.1.2 TD

定义
相比于MC方法仅考虑向后执行一步,把获得的即时奖励和下一状态的价值函数(TD-target)作为真实的累计奖励。将TD-target与当前状态价值函数的差值(TD-error)用于优化参数。
在这里插入图片描述

理解: 我们希望 V π ( s t ) V^\pi(s_t) Vπ(st) V π ( s t + 1 ) V^\pi(s_{t+1}) Vπ(st+1)相减的损失跟 r t r_t rt相似,并以此更新V的参数。
在这里插入图片描述
问题

  • 相比于MC方法有较低的方差,但因为模型预测的不准确性导致存在偏差

MC vs TD

在这里插入图片描述

  • 基于MC的方法会花费更长的时间(需要生成完整的序列)
  • 基于MC的方法比时序差分方法的方差更大(r和G都是随机变量,但是G是由很多r合起来的,方差更大)
  • 采用TD方法可能存在偏差
  • 两种方法估计出来的结果很有可能不相同

1.2 State-action Value Function

采用策略 π \pi π

  • 1
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冠long馨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值