K-Means 聚类 (K-Means Clustering)
关键词:
- K-Means
- 聚类算法
- 分群分析
- 无监督学习
- 数据分割
1. 背景介绍
1.1 问题的由来
在数据分析和机器学习领域,面对庞大的数据集,寻找内在的结构和模式是一项重要的任务。K-Means聚类算法便是解决这类问题的一种有效方法。K-Means算法主要用于将数据集划分为K个不同的簇,使得同一簇内的数据点相互间距离尽可能小,而不同簇间的距离尽可能大。这种“距离”通常指的是欧氏距离,但在不同的应用场景下,也可以采用其他度量方式。
1.2 研究现状
K-Means算法因其简单、高效和易于实现的特点,在众多领域得到了广泛的应用,比如市场细分、客户群分析、基因表达数据分析、图像分割以及推荐系统等领域。然而,K-Means也有其局限性,例如对于非球形的簇结构,算法的表现不佳;初始中心点的选择对最终聚类结果有重大影响;对于大规模数据集,K-Means可能收敛速度较慢。
1.3 研究意义
K-Mean