KMeans 聚类 (KMeans Clustering)

K-Means 聚类 (K-Means Clustering)

关键词:

  • K-Means
  • 聚类算法
  • 分群分析
  • 无监督学习
  • 数据分割

1. 背景介绍

1.1 问题的由来

在数据分析和机器学习领域,面对庞大的数据集,寻找内在的结构和模式是一项重要的任务。K-Means聚类算法便是解决这类问题的一种有效方法。K-Means算法主要用于将数据集划分为K个不同的簇,使得同一簇内的数据点相互间距离尽可能小,而不同簇间的距离尽可能大。这种“距离”通常指的是欧氏距离,但在不同的应用场景下,也可以采用其他度量方式。

1.2 研究现状

K-Means算法因其简单、高效和易于实现的特点,在众多领域得到了广泛的应用,比如市场细分、客户群分析、基因表达数据分析、图像分割以及推荐系统等领域。然而,K-Means也有其局限性,例如对于非球形的簇结构,算法的表现不佳;初始中心点的选择对最终聚类结果有重大影响;对于大规模数据集,K-Means可能收敛速度较慢。

1.3 研究意义

K-Mean

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值