ZeroShot CoT:AI跨领域学习的新范式

Zero-Shot CoT:AI跨领域学习的新范式

关键词:零样本学习,跨领域学习,CoT,知识共享,迁移学习

摘要:本文深入探讨了零样本集合转化(Zero-Shot Collective Transfer,CoT)这一AI跨领域学习的新范式。通过详细分析其背景、核心概念、算法原理及实际应用,本文旨在为读者提供全面、系统的理解和实践指导。

第一部分:背景介绍

1.1 问题背景

在人工智能技术不断发展的今天,AI已经渗透到我们日常生活的方方面面。然而,传统的人工智能技术主要依赖于大规模的标注数据进行训练,这种“有监督学习”的方式在数据获取和处理上面临着诸多挑战。例如,数据标注的成本高、获取困难,数据质量和数量不足等问题。为了解决这些问题,无监督学习和零样本学习技术逐渐受到了关注。

1.2 问题描述

零样本学习(Zero-Shot Learning,ZSL)是一种无需训练数据标签,即可对未知类别进行分类的机器学习方法。而零样本集合转化(Zero-Sho

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值