Zero-Shot CoT:AI跨领域学习的新范式
关键词:零样本学习,跨领域学习,CoT,知识共享,迁移学习
摘要:本文深入探讨了零样本集合转化(Zero-Shot Collective Transfer,CoT)这一AI跨领域学习的新范式。通过详细分析其背景、核心概念、算法原理及实际应用,本文旨在为读者提供全面、系统的理解和实践指导。
第一部分:背景介绍
1.1 问题背景
在人工智能技术不断发展的今天,AI已经渗透到我们日常生活的方方面面。然而,传统的人工智能技术主要依赖于大规模的标注数据进行训练,这种“有监督学习”的方式在数据获取和处理上面临着诸多挑战。例如,数据标注的成本高、获取困难,数据质量和数量不足等问题。为了解决这些问题,无监督学习和零样本学习技术逐渐受到了关注。
1.2 问题描述
零样本学习(Zero-Shot Learning,ZSL)是一种无需训练数据标签,即可对未知类别进行分类的机器学习方法。而零样本集合转化(Zero-Sho