第1章 引言
1.1 研究背景与意义
金融时序数据预测的重要性
金融市场的动态变化对全球经济产生深远影响,因此,准确预测金融市场走势具有重要意义。时序数据在金融领域中扮演着至关重要的角色,它涵盖了股票价格、汇率、利率、交易量等各种信息。通过对这些数据的分析和预测,投资者、金融机构和监管机构可以更好地做出决策,降低投资风险,优化资源配置。
智能化预测的发展趋势
随着人工智能技术的迅猛发展,金融时序数据的预测方法也在不断革新。传统的预测方法,如ARIMA模型、SARIMA模型等,虽然具有一定的基础性,但在面对复杂多变的金融市场时,往往难以取得理想的效果。近年来,深度学习等先进技术的引入,为金融时序数据预测带来了新的机遇。这些方法能够通过学习大量历史数据,捕捉到数据中的复杂模式和关联,从而提高预测精度。
研究目标与问题
本研究旨在开发一种智能化的金融时序数据预测模型,以提高金融市场的预测精度。具体目标包括:
- 构建高效的数据处理流程:确保数据质量,并进行有效的特征提取。
- 设计先进的预测模型:结合传统方法