AIGC超分辨率模型部署指南:Web端与移动端优化
关键词:AIGC超分辨率、模型部署、Web端优化、移动端优化、模型压缩、推理加速、跨平台适配
摘要:随着AIGC(生成式人工智能)技术的普及,超分辨率(Super-Resolution, SR)模型在图像/视频高清化场景中应用广泛。然而,将实验室中的高精度模型部署到Web端(浏览器)和移动端(Android/iOS)时,面临计算资源受限、延迟敏感、设备碎片化等挑战。本文从技术原理出发,系统讲解超分辨率模型在Web与移动端的部署流程,涵盖模型压缩、推理框架选择、硬件加速适配等核心技术,并结合实战案例演示关键步骤,为开发者提供可落地的优化指南。
1. 背景介绍
1.1 目的和范围
超分辨率技术通过算法将低分辨率(Low-Resolution, LR)图像/视频恢复为高分辨率(High-Resolution, HR)内容,广泛应用于在线图片编辑、视频会议、移动端相册优化等场景。本文聚焦AIGC驱动的深度学习超分辨率模型(