为什么压缩感知用L1范数能够还原稀疏解?

本文探讨了压缩感知中L1范数为何能还原稀疏解的问题,关键在于高维空间中随机矩阵作为同构映射的概率增大,以及由此产生的超正轴体和同构映射的性质。通过对RIP、稀疏度和同构映射的分析,揭示了L1范数在保持解的稀疏性方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个问题我思考了几天了,直到方才,我才突然把所有的逻辑因果串在一起,这个note的目的就是把这些思绪整理并纪录下来:


我之前说这和高维超正轴体的空间形态有关,那种描述虽然形象,但是却缺乏数学依据,并不是非常经得起推敲。我也尝试仅仅用那种十分pointy的几何结构来说服自己,但是做不到。所以我去翻看了Donoho的论文(这好像是并未发表的草稿,我在Donoho的服务器上搜到,但是这一思想的起源应该正是此处:for Most Large Underdetermined Systems of Linear Equations the Minimal l1-norm Solution is also the Sparsest Solution),当然还查了其它的资料。。。那些晦涩的数学推理演算简直是噩梦,所以直到方才我才得以把所有逻辑联系起来,从思维的源头来还原这一思想的初始形态:


首先,最为重要的一点,也是我之前忽略的一点,那就是最初的那个同构映射!这个才是连接所有问题的关键,高维空间中这个理论得以成立,也正是因为维度越高,取到的随机矩阵M(也就是映射F)成为一个同构映射的概率也越大。这也就是为什么要长篇大论的讨论RIP,2S-sparse,3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值