这个问题我思考了几天了,直到方才,我才突然把所有的逻辑因果串在一起,这个note的目的就是把这些思绪整理并纪录下来:
我之前说这和高维超正轴体的空间形态有关,那种描述虽然形象,但是却缺乏数学依据,并不是非常经得起推敲。我也尝试仅仅用那种十分pointy的几何结构来说服自己,但是做不到。所以我去翻看了Donoho的论文(这好像是并未发表的草稿,我在Donoho的服务器上搜到,但是这一思想的起源应该正是此处:for Most Large Underdetermined Systems of Linear Equations the Minimal l1-norm Solution is also the Sparsest Solution),当然还查了其它的资料。。。那些晦涩的数学推理演算简直是噩梦,所以直到方才我才得以把所有逻辑联系起来,从思维的源头来还原这一思想的初始形态:
首先,最为重要的一点,也是我之前忽略的一点,那就是最初的那个同构映射!这个才是连接所有问题的关键,高维空间中这个理论得以成立,也正是因为维度越高,取到的随机矩阵M(也就是映射F)成为一个同构映射的概率也越大。这也就是为什么要长篇大论的讨论RIP,2S-sparse,3