[pvanet 检测]——基于深度学习的人体姿态估计网络

1151 篇文章 ¥299.90 ¥399.90
本文介绍了基于深度学习的PVA Net网络在人体姿态估计中的应用。通过安装PVA Net并结合OpenCV,展示了如何对图片进行姿态检测,强调了其在行为分析、辅助检测和健康监控等领域的潜在价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[pvanet 检测]——基于深度学习的人体姿态估计网络

随着深度学习的发展,人体姿态估计在计算机视觉领域中变得越来越重要。PVA Net是一种基于深度学习的人体姿态估计网络。我们将介绍如何使用PVA Net实现人体姿态估计。

首先,我们需要安装PVA Net。可以通过GitHub上的源代码进行安装。下面是使用pip来安装的示例代码:

pip install descartes
pip install git+https://github.com/CMU-Perceptual-Computing-Lab/caffe_rtpose.git

安装完成后,我们需要准备图片进行测试。以下是使用PVA Net进行人体姿态估计的示例代码:

from openpose import get_pose
from matplotlib import pyplot as plt
import cv2

# 加载模型
net 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值