Make Transformer Great Again——时间序列预测器PRformer 拉爆8个时序预测数据集

github地址:https://github.com/usualheart/PRformer
论文地址:https://arxiv.org/abs/2408.10483
论文题目: PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting

长期以来,时间序列预测领域Transformer被基于MLP的线性模型所压制。PRformer,创造性地提出Pyramid RNN embeddings(PRE),大幅提升Transformer时序预测器的性能至SOTA级别。让Transformer在时间序列预测任务上 Great Again !

Introduction

论文提出Pyramid RNN embeddings(PRE)模块,PRE由特征金字塔和多尺度RNN组成,学习单变量时间序列的嵌入表示。PRE能够代替位置编码,大幅提升现有Transformer时序预测器的性能。

PRformer整体架构

请添加图片描述

在8个真实时间序列数据集上达到了SOTA性能,同时大幅领先线性模型预测器。
请添加图片描述

得益于PRE,PRformer时空复杂度随序列长度线性增长。
请添加图片描述

相比现有Transformer SOTA基线PatchTST,PRformer的运行时间和内存占用显著降低。

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值