github地址:https://github.com/usualheart/PRformer
论文地址:https://arxiv.org/abs/2408.10483
论文题目: PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting
长期以来,时间序列预测领域Transformer被基于MLP的线性模型所压制。PRformer,创造性地提出Pyramid RNN embeddings(PRE),大幅提升Transformer时序预测器的性能至SOTA级别。让Transformer在时间序列预测任务上 Great Again !
Introduction
论文提出Pyramid RNN embeddings(PRE)模块,PRE由特征金字塔和多尺度RNN组成,学习单变量时间序列的嵌入表示。PRE能够代替位置编码,大幅提升现有Transformer时序预测器的性能。
在8个真实时间序列数据集上达到了SOTA性能,同时大幅领先线性模型预测器。
得益于PRE,PRformer时空复杂度随序列长度线性增长。
相比现有Transformer SOTA基线PatchTST,PRformer的运行时间和内存占用显著降低。