数模学习笔记-灰色关联分析
算法定义
灰色关联分析 (Grey Relation Analysis, GRA),是一种多因素统计分析的方法。
首先先引入一个概念:灰色系统。这个概念的提出是相对于白色系统和黑色系统而言的。在控制论里面,颜色一般代表的是对于一个系统已知信息的多少,白色代表信息充足,黑色系统代表其中的结构我们并不清楚,灰色介于两者之间,表示我们对系统只有部分了解。
在一个灰色系统中,我们假设知道某个指标与其他因素是有关系的,那么就想要了解这个指标与哪些因素的关系更强,与哪些因素的关系更弱。根据强弱关系给这些因素排序,我们就知道我们关注的这个指标与哪些因素更相关。
因素分析的基本方法过去主要是采用回归分析等方法,但回归分析的方法存在很多欠缺,例如要求数据量大、计算量大以及可能出现反常情况等。为克服以上弊端,因此采用灰色关联度分析来做系统分析。
灰色关联度一定是分析向量与向量之间以及矩阵与矩阵之间的关联度。既然计算关联度,一定是计算某一个待比较的数列与参照物(参考数列)之间的相关程度。
模型步骤
- 确定比较对象和参考数列
- 确定各指标对应权重
- 计算灰色关联系数
- 计算关联系数均值,形成关联序
- 评价分析
这个陌生概念有点多了,咱慢慢来
例题详解(还没找到好的例题)
步骤一:确定比较对象和参考数列
确定比较对象(评价对象)和参考数列(评价标准)。设评价对象有m个,评价指标有n个(m行n列的原始矩阵),参考数列为:
比较数列为:
概念有点绕,别搞混了
步骤二:确定各指标对应权重
可用层次分析法、熵权法等确定个指标对应的权重:
步骤三:计算灰色关联系数
为比较数列xi对参考数列x0在第k个指标上的关联系数。其中rho取值在0~1之间为分辨系数,一般来讲分辨系数越大,分辨率越大;实际计算中一般取 tho = 0.5,目前大多数研究在利用GRA进行实证研究时都取分辨系数为0.5,邓聚龙教授的书上也这样写着。
关联系数的公式比较难懂,只需要知道确定了原始矩阵,公式中只有分母部分的
是变量,其余都是可以确定的。
其中称
为两级最小差,称
为两级最大差。
步骤四:计算灰色加权关联度
式中:ri为第i个评价对象对理想对象的灰色加权关联度。
步骤五:评价分析
根据灰色加权关联度的大小,对各评价对象进行排序,可建立评级对象的关联序,关联序越大,其评价效果越好。
模型总结
将灰色关联分析用于选择决策中可以针对大量不确定因素及其相互关系,将定量和定性方法有机结合起来,使原本复杂的决策问题变得清晰简单,而且计算方便,并可在一定程度上排除决策者的主观任意性,得出结论更加客观。
模型代码
参考文献
以上笔记内容基于学习:
[1] 数学建模算法与应用/司守奎, 孙兆亮主编. —2版. —北京:国防工业出版社,2015.4
[2] https://zhuanlan.zhihu.com/p/149479206?utm_source=wechat_timeline
仅供参考学习