贝尔曼方程 Bellman Equation

贝尔曼方程,又称动态规划方程,由理查·贝尔曼提出,是动态规划的核心概念。它将决策问题转化为子问题,广泛应用于控制理论、经济学及人工智能等领域。本文简要介绍了贝尔曼方程的原理及其在不同场景的应用。
摘要由CSDN通过智能技术生成

分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.csdn.net/jiangjunshow

也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!

               

贝尔曼方程(Bellman Equation)也被称作动态规划方程(Dynamic Programming Equation),由理查·贝尔曼(Richard Bellman)发现,由于其中运用了变分法思想,又被称之为现代变分法。

贝尔曼方程(Bellman Equation)  也被称作动态规划方程(Dynamic Programming Equation),由理查·贝尔曼(Richard Bellman)发现。
贝尔曼方程是动态规划(Dynamic Programming)这些种数学最佳化方法能够达到最佳化的必要条件。此方程把“决策问题在特定时间怎么的值”以“来自初始选择的报酬比从初始选择衍生的决策问题的值”的形式表示。借此这个方式把动态最佳化问题变成开简单的子问题,而这些子问题遵守从贝尔曼所提出来的“最佳化还原理”。
贝尔曼方程最早应用在工程领域的控制理论和其他应用数学领域,而后成为经济学上的重要工具。
几乎所有的可以用最佳控制理论(Optimal Control Theory)解决的问题也可以通过分析合适的贝尔曼方程得到解决。然而,贝尔曼方程通

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值