贝尔曼方程(Bellman Equation)

贝尔曼方程(Bellman Equation)

贝尔曼方程(Bellman Equation)是动态规划和强化学习中的核心概念,用于描述最优决策问题中的价值函数的递归关系。它为状态值函数和动作值函数提供了一个重要的递推公式,帮助我们计算每个状态或状态-动作对的预期回报。

贝尔曼方程的原理

贝尔曼方程基于一个基本的思想:某个状态的价值等于在该状态下可获得的即时奖励,加上从该状态出发未来所有可能路径的折扣回报的期望值。这一思想可以应用于状态值函数和动作值函数。

状态值函数 V(s)

状态值函数 V(s) 表示在状态 𝑠下开始,按照某个策略 π 行动时的期望总回报。贝尔曼方程将状态值函数定义为:
在这里插入图片描述
贝尔曼方程的意思是,当前状态的价值等于当前即时奖励,加上在未来状态的折扣价值的期望。

动作值函数 Q(s,a)

动作值函数 Q(s,a) 表示在状态 s 下采取动作 a,然后按照策略 π 行动时的期望总回报。贝尔曼方程将动作值函数定义为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值