贝尔曼方程

本文探讨了贝尔曼方程在强化学习中的核心作用,包括贝尔曼期望方程与最优方程的区别,以及如何通过不同算法求解最优策略。通过对比两种方程,我们了解到贝尔曼最优方程用于寻找最优策略,而期望方程则针对特定策略进行评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贝尔曼方程在强化学习中无处不在,对于理解强化学习算法的工作原理是非常必要的。贝尔曼方程让我们可以开始解决MDPs问题。

贝尔曼期望方程

贝尔曼最优方程

将贝尔曼期望方程与贝尔曼最优方程进行对比,可以发现,贝尔曼期望方程是对于某一个给定的策略,求其状态值函数和动作值函数,也即对某一策略进行估计;而贝尔曼最优方程则是要去寻找最优策略,也即通过对动作值函数进行greedy得到。
观察贝尔曼最优方程可以发现,这并不是线性方程,其中引入了max函数,这是一个非线性函数,因此通常来说我们并不能像贝尔曼期望方程一样直接求解得到一个闭式解,只能通过迭代进行求解,求解的方法有:1) Policy Iteration 2)Value Iteration 3)Q-learning 4)Sarsa

贝尔曼方程的重要性在于,它能让我们将一个状态的值表达成其它状态的值。这意味着,如果我们知道 St+1 S t + 1 的值,我们可以很容易计算出 St S t 的值。这为计算每个状态值的迭代方法打开了大门,因为如果我们知道下一个状态的值,我们就可以知道当前状态的值。在这里,最重要的是要记住方程式的编号。最后,随着Bellman方程(贝尔曼方程)的出现,我们可以开始研究如何计算最优策略,并编写我们的第一个强化学习智能体程序。

### 贝尔曼方程在传感器模型中的应用 贝尔曼方程主要用于解决马尔可夫决策过程(MDP),其核心在于通过迭代方式计算最优价值函数,从而指导智能体做出最佳行动决定[^1]。然而,在讨论贝尔曼方程应用于传感器模型之前,有必要先理解传感器数据如何融入到强化学习框架内。 #### 传感器数据作为输入源 对于基于物理世界的感知任务而言,传感器提供关于环境变化的关键信息流。这些实时获取的数据可以被视作强化学习环境中的一部分观察值(Observations),进而影响状态空间(State Space)定义以及后续的动作选择(Action Selection)[^3]。 #### 结合贝尔曼期望方程建模不确定性 当考虑具有不确定性的传感测量时,可以通过引入概率分布来表达这种不确定性,并将其纳入贝尔曼期望方程中: \[ V(s)=\sum_{a} \pi(a|s)\left[R(s,a)+\gamma \sum_{s'} P(s'|s,a)V(s')\right]\] 其中\(R(s,a)\)代表即时奖励;而转移概率矩阵 \(P(s'|s,a)\) 则反映了由于噪声或其他因素造成的观测误差所带来的未来可能到达的状态的概率分布情况[^2]。 #### 实现示例:利用Gaussian Process处理传感器读数 针对具体应用场景比如机器人导航或智能家居控制系统内的温度湿度监测等场合下,采用高斯过程回归(Gaussian Process Regression,GPR)能够有效应对非线性异方差特性明显的连续型变量预测问题。下面给出一段Python代码片段用于展示这一思路的实际操作流程: ```python from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C def fit_sensor_model(X_train, y_train): kernel = C(1.0, (1e-3, 1e3)) * RBF([1.0], (1e-2, 1e2)) gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9) gp.fit(X_train, y_train) return gp # X_train y_train 应该是从实际传感器收集来的训练样本集 gp_model = fit_sensor_model(X_train,y_train) def predict_with_uncertainty(x_new,gp_model): mu,sigma = gp_model.predict([[x_new]],return_std=True) return mu.flatten(),sigma.flatten() ``` 此段代码展示了如何构建一个简单的GP模型来进行带有置信区间的预测,这有助于更精确地估计由传感器带来的随机扰动效应并据此调整策略参数以适应不断变化的真实世界条件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值