贝尔曼方程

本文探讨了贝尔曼方程在强化学习中的核心作用,包括贝尔曼期望方程与最优方程的区别,以及如何通过不同算法求解最优策略。通过对比两种方程,我们了解到贝尔曼最优方程用于寻找最优策略,而期望方程则针对特定策略进行评估。
摘要由CSDN通过智能技术生成

贝尔曼方程在强化学习中无处不在,对于理解强化学习算法的工作原理是非常必要的。贝尔曼方程让我们可以开始解决MDPs问题。

贝尔曼期望方程

贝尔曼最优方程

将贝尔曼期望方程与贝尔曼最优方程进行对比,可以发现,贝尔曼期望方程是对于某一个给定的策略,求其状态值函数和动作值函数,也即对某一策略进行估计;而贝尔曼最优方程则是要去寻找最优策略,也即通过对动作值函数进行greedy得到。
观察贝尔曼最优方程可以发现,这并不是线性方程,其中引入了max函数,这是一个非线性函数,因此通常来说我们并不能像贝尔曼期望方程一样直接求解得到一个闭式解,只能通过迭代进行求解,求解的方法有:1) Policy Iteration 2)Value Iteration 3)Q-learning 4)Sarsa

贝尔曼方程的重要性在于,它能让我们将一个状态的值表达成其它状态的值。这意味着,如果我们知道 St+1 S t + 1 的值,我们可以很容易计算出 St S t 的值。这为计算每个状态值的迭代方法打开了大门,因为如果我们知道下一个状态的值,我们就可以知道当前状态的值。在这里,最重要的是要记住方程式的编号。最后,随着Bellman方程(贝尔曼方程)的出现,我们可以开始研究如何计算最优策略,并编写我们的第一个强化学习智能体程序。

在Python中,求解贝尔曼方程通常用于动态规划问题,特别是在处理像马尔科夫决策过程(Markov Decision Processes, MDPs)这样的问题时,如背包问题、路径规划等。贝尔曼方程描述了一个最优值函数与决策的关系,它是一个递推公式,可以帮助我们找到状态空间中最优的策略。 Python中有多种库可以用来求解贝尔曼方程,比如`numpy`用于数值计算,`pandas`进行数据操作,以及专门的动态规划库如`gym`(针对强化学习),`scipy.optimize` 或 `scikit-optimize` 等。 以下是使用`BellmanFord`算法(适用于负权边的情况)的一个简单示例: ```python from collections import defaultdict import numpy as np def bellman_ford(graph, initial_state, max_iterations=100): distances = {state: float('inf') for state in graph} distances[initial_state] = 0 predecessors = {} for _ in range(max_iterations): updated = False for current_state, neighbors_and_weights in graph.items(): for neighbor, weight in neighbors_and_weights: distance_to_neighbor = distances[current_state] + weight if distance_to_neighbor < distances[neighbor]: distances[neighbor] = distance_to_neighbor predecessors[neighbor] = current_state updated = True if not updated: break return distances, predecessors # 示例图的表示,可以用字典表示邻接表 graph = { 'A': [('B', -1), ('C', 4)], 'B': [('D', -3), ('C', 2)], 'C': [('D', 1)], 'D': [] } distances, predecessors = bellman_ford(graph, 'A') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值