视觉SLAM十四讲阅读笔记

之前囫囵吞枣读过一遍,没有太懂,这次再过一遍,记笔记让自己印象更深刻一些

第1讲 前言

概念
SLAM(同时定位与地图构建):搭载传感器的主体在运动中建立环境模型,同时估计自己的运动
视觉SLAM:搭载的传感器是相机

习题
1、A的行数=b的列数,A的列数=b的行数;A有逆矩阵
2、
3、在c++中,类是不同对象相同属性和操作的集合。STL(Standard Template Library),标准模板库。它把基本的数据结构和算法进行了实现,并把它们封装在模板类(即容器)里,如等。对比STL与基本的数据结构,STL能更加灵活地处理数据。我简单地使用过它们。
4、在VS2019、CodeBlocks下编写过c语言。
5、不知道。c++11新特性:引入了auto和decltype关键字、右值引用、列表初始化、模板的改进、智能指针、nullptr等。c++其它的标注:c++98、c++03、c++14、c++17。
6、知道,Ubuntu18.04和16.04
7、Linux目录结构:以一个根节点开始的树状目录结构。cd、ls、mv等
8、apt-get install安装(apt-get update命令会扫描软件源服务器,在本地建立一个索引,每次需要安装软件则根据索引文件像软件源查询资源;源码安装
9、OK

第2讲 初识SLAM

概念
传感器:携带于本体上的;外部环境中的(导轨、GPS、二维码等)
RGB-D:彩色图片+每个像素到相机的距离
视差:单目相机没有深度图像,无法区分近而大的物体和远而小的物体,如果想判断的话,必须移动相机的视角,这样我们可以通过以下信息:相机往右走、物体往左走;近的物体移动的慢、远的物体移动的快,来生成视差,从而判断物体的距离。
尺度:将相机运动与场景大小同时放大或缩小相同的倍数,看到的图像是一样的(参考摧毁大厦的怪兽),所以我们无法估计单目相机建立的地图和实际的地图之间相差的因子,即单目相机具有尺度不确定性。

经典视觉SLAM框架

传感器数据->前端视觉里程计->后端非线性优化->回环检测->建图
VO(视觉里程计):通过相邻帧的图像估计相机的运动
问题:累计漂移。由于VO只估计相邻两帧图像间相机的运动,前一次估计的误差会带到后一次估计中,长此以往就会产生很大的误差。为解决漂移问题,有了以下的技术。
后端优化:所有传感器都会带有噪声,前端获取到的是一系列带有噪声的数据,前端将这些数据传给后端,后端需要从这些数据中估计系统的状态,并计算出这个估计的不确定性。
回环检测
我们可以通过判断图片的相似性,得到机器人是否曾经来过这个地方。检测到回环之后,就把某点和另一点是同一个位置这个信息告诉后端优化算法,进而后端优化算法调整轨迹和地图,得到全局一致的轨迹和建图。
建图
分类:度量地图与拓扑地图
度量地图:稀疏地图包含有代表意义的信息,可用于定位;稠密地图包含所有能看到的物体,可用于导航。
拓扑地图:由节点和边组成,只考虑连通性

SLAM问题的数学表述
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值