组合论基础课(图的染色1)

本文介绍了图论中的d色可染定理及其证明过程,包括引理3.1.1至3.1.4的详细解释,讨论了如何通过染色策略证明一个图是d色可染的条件,涉及到图的邻居数目、连通组件和路径性质等概念。
摘要由CSDN通过智能技术生成

定理3.1 让d>=3, 和图G中所有顶点的邻居数目<=d, 以及图G不含有d+1度的clique。那么,图G一定是d色可染。

Note: 我们给一个图G“染色”是指,对每个顶点染上一个颜色,并且使得相邻的两个节点颜色不同。d色可染,是指只用d种颜色就能给这个图G染色。

证明:假设定理不成立,那么存在一个图G,是所有违反该定理的图中,顶点数目是最少的。在继续证明之前,必须注意到:让C是一个颜色集合,并且C能给G染色。让S是C的一个子集,我们说G(S)是“图G通过S颜色induce出来”的子图,即是剔除C-S颜色染的那些顶点以及它们相邻的边从而得到的子图。那么对于G(S)中任意的一个“connected component”,“重新分配”它们的颜色,这样出来的结果对于G来说仍旧是一个染色。“重新分配”是指对于染了a颜色的顶点,全部替换成b颜色,染了b颜色的顶点,全部替换成a颜色。


我们接着证明以下几个引理,从而证明出该定理。

引理3.1.1 图G一定存在一个节点x,x的邻居数目是d。

证明:如果所有的节点的邻居数目都是<= d - 1,那么去掉任意一个节点y后图G就变成了图H,由于图G是“最小”的d色不可染的图,图H一定是d色可染。假定图H现在用了一种d-染色,那么图G中y的d-1个邻居只会有d-1种颜色,这样y就可以染上剩下的一种颜色,从而使得图G是d色可染的,产生了矛盾。证毕。


有了引理3.1.1,不难看出对于一个有d个邻居的节点x,图G去掉x后产生的图H一定是d色可染,并且任意一种图H的d-

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值