论文阅读1——DiffYOLO:基于YOLO和扩散模型的抗噪目标检测

论文地址:https://arxiv.org/pdf/2401.01659 

论文翻译

DiffYOLO:基于YOLO和扩散模型的抗噪目标检测

摘要:以YOLO系列为代表的目标检测模型已经得到了广泛的应用,并在高质量的数据集上取得了很好的效果,但并非所有的工作条件都是理想的。为了解决在低质量数据集上定位目标的问题,现有的方法要么训练新的目标检测网络,要么需要大量的低质量数据集进行训练。然而,我们在本文中提出了一个框架,并将其应用于YOLO模型,称为DiffYOLO。具体来说,我们从去噪扩散概率模型中提取特征映射来增强训练良好的模型,这使得我们可以在高质量数据集上微调YOLO,并在低质量数据集上进行测试。结果表明,该框架不仅可以证明在噪声数据集上的性能,而且可以证明在高质量测试数据集上的检测结果。我们将在后面补充更多的实验(使用各种数据集和网络架构)。

1 介绍

在从自动驾驶到医学图像处理的目标检测任务中,YOLO已成为主流。Alice Froidevaux等人利用YOLO通过卫星图像检测车辆[3];Sudipto Paul等将YOLO应用于脑癌MRI图像识别[13];Ethan Grooby等人探索了使用YOLO自动进行人脸特征检测[7]。虽然YOLO在目标检测任务中取得了很大的成功,但从带有噪声的图像中捕获目标仍然是一个很大的挑战。通常,目标检测模型是在高质量的图像上训练的,但测试条件可能不那么理想。从图1可以看出,在有噪声的测试图像上,训练良好的YOLO在高质量数据集上的检测结果很差。如果这些在高质量数据集上训练的模型可以通过简单的增强在噪声测试集上表现良好,那么可以更好地利用训练好的模型。

在预训练模型上进行迁移学习是充分利用预训练模型的重要方法。它首先出现在语言模型fine-tune中[9],带来了许多好处,比如提高训练效率,减少对高质量训练集的依赖,因此我们希望找到一种方法来利用其他训练良好的模型来提高YOLO模型的性能。

由Sohl-Dickstein等人提出的去噪扩散概率模型(Denoising diffusion probistic models, DDPM)在许多生成任务中显示出了很大的优势[15,8]。Othmane Laousy等人证明扩散方法不容易受到扰动的影响[10],因此我们决定将扩散模型纳入YOLO模型。

因此,我们在本文中提出了一个框架,用于提高已经在高质量数据集上训练的模型的抗噪声性,称为DiffYOLO。我们首先从已经训练好的扩散模型的Unet中提取一些特征,将它

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值