【论文简介】Circle Loss: A Unified Perspective of Pair Similarity Optimization

Circle Loss是旷视在CVPR2020提出的一种统一视角看待类级和对级损失的方法。它解决了传统损失函数在优化灵活性和收敛状态上的问题,通过调整超参数γ和m实现更好的相似度学习。Circle Loss通过平衡Sn和Sp的优化,逐渐减小梯度,以及提供更明确的收敛目标,提高了特征空间的可分性。
摘要由CSDN通过智能技术生成

Circle Loss: A Unified Perspective of Pair Similarity Optimization

旷世cvpr2020的一篇文章,站在更高的视角,统一了deep feature learning的两大基础loss:基于class-level label的loss(如softmax + cross entropy)和基于pair-wise label的loss(如triplet loss),指出了这二者没有本质差异,都是在最小化类间相似度(记为Sn),最大化类内相似度(记为Sp)。

文章认为这两大基础loss,都可以归纳为一种unified loss的特殊形式:

这种loss形式试图最小化(Sn-Sp),这看似很合理,但其实存在如下问题:

 1. Lack of flexibility for optimization:我们的目标是使Sn接近0,Sp接近1。注意Sn-Sp传给Sn和Sp的梯度是严格相等的,当Sn已经接近0但Sp并没有很接近1的时候,传给Sn的梯度理应很小才对,可是它却会因为另一方的“不给力”而仍然收到一个很大的梯度。反之亦然。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值