Circle Loss: A Unified Perspective of Pair Similarity Optimization 圆损失函数,统一优化视角,革新深度特征学习范式 CVPR 2020

旷视研究团队提出Circle Loss,一种新的损失函数,统一了分类和pairwise学习的视角。Circle Loss通过自定步调的加权方式解决传统方法中优化灵活性和收敛状态不明确的问题,适用于深度特征学习,提升人脸识别、行人再识别和细粒度图像检索等任务的性能。
摘要由CSDN通过智能技术生成

在这里插入图片描述
论文来源:CVPR 2020
论文链接

最近旷视做了一项非常fundamental的工作。简单来讲,原来特征学习有 2 种基本范式,分类学习和 pairwise 学习,人们普遍都觉得这两者虽然有联系,但是总体上仍是割裂的。旷视在这项工作中首次将两者放在一个统一的框架下,用一个general 的公式定义了这两种范式,且在这统一的公式下,获得了比两者各自最高水平方法都要好的性能。这项工作已经发表在CVPR 2020。

深度特征学习有两种基本范式,分别是使用类标签和使用正负样本对标签进行学习。使用类标签时,一般需要用分类损失函数(比如 softmax + cross entropy)优化样本和权重向量之间的相似度;使用样本对标签时,通常用度量损失函数(比如 triplet 损失)来优化样本之间的相似度。

这两种学习方法之间并无本质区别,其目标都是最大化类内相似度( s p s_p sp)和最小化类间相似度( s n s_n sn)。从这个角度看,很多常用的损失函数(如 triplet 损失、softmax 损失及其变体)有着相似的优化模式:

它们会将 s n s_n sn s p s_p sp组合成相似度对 (similarity pair)来优化,并试图减小( s n − s p s_n-s_p snsp)。在( s n − s p s_n-s_p snsp)中,增大 s p s_p sp等效于降低 s n s_n sn。这种对称式的优化方法容易出现以下两个问题,如图 1 (a) 所示。
在这里插入图片描述
优化缺乏灵活性

s n s_n sn s p s_p sp上的惩罚力度是严格相等的。换而言之,给定指定的损失函数,在 s n s_n sn s p s_p sp上的梯度的幅度总是一样的。例如图 1(a)中所示的 A 点,它的 s n s_n sn已经很小了,可是, s n s_n sn会不断受到较大梯度。这样现象低效且不合理。

收敛状态不明确

优化 ( s n − s p s_n-s_p snsp) 得到的决策边界为 s n − s p = m s_n-s_p=m snsp=m(m 是余量)。这个决策边界平行于 s n = s p s_n=s_p sn=sp,维持边界上任意两个点(比如 T = ( 0.4 , 0.7 ) T=(0.4,0.7) T=(0.4,0.7) T ′ = ( 0.2 , 0.5 ) T'=(0.2,0.5) T=(0.2,0.5))的对应难度相等,这种决策边界允许模棱两可的收敛状态。比如, T T T T ′ T' T都满足了 s p − s n = 0.3 s_p-s_n=0.3 spsn=0.3的目标,可是比较二者时,会发现二者之间的分离量只有 0.1( s p ′ − s n = 0.1 s_p'-s_n=0.1 sp

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值