秩
- 「秩」是图像经过矩阵变换之后的空间维度。
假设原始向量A(x,y)
是一个点,如果与矩阵 [ c o s ( θ ) − s i n ( θ ) s i n ( θ ) c o s ( θ ) ] \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix} [cos(θ)sin(θ)−sin(θ)cos(θ)]相乘之后得到, A ( x C o s ( θ ) + y S i n ( θ ) , − x S i n ( θ ) + y C o s ( θ ) ) A(xCos(\theta)+ySin(\theta),-xSin(\theta)+yCos(\theta)) A(xCos(θ)+ySin(θ),−xSin(θ)+yCos(θ))向量。
相当于对矩阵进行了旋转。
因为矩阵 [ c o s ( θ ) − s i n ( θ ) s i n ( θ ) c o s ( θ ) ] \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix} [cos(θ)sin(θ)−sin(θ)cos(θ)]的秩是2,所以旋转之后的维度也是2维。
如果我们通过矩阵
[
1
−
1
1
−
1
]
\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}
[11−1−1]进行变换:那么变换后的向量为:
A
(
x
+
y
,
−
x
−
y
)
A(x+y,-x-y)
A(x+y,−x−y),变换后的图像为:
因此,此矩阵的「秩」为1。
我们通过矩阵
[
0
0
0
0
]
\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}
[0000]进行变换:
因此,此矩阵的「秩」为0。
所以,「秩」是图像经过矩阵变换之后的空间维度。