矩阵的秩到底描述了什么?

本文探讨了矩阵变换在图像处理中的作用,特别是矩阵的秩如何决定图像旋转后的空间维度。通过举例展示了秩为2、1和0的矩阵如何影响图像变换,解释了秩在保持或降低维度方面的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 「秩」是图像经过矩阵变换之后的空间维度。
    假设原始向量A(x,y)是一个点,如果与矩阵 [ c o s ( θ ) − s i n ( θ ) s i n ( θ ) c o s ( θ ) ] \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix} [cos(θ)sin(θ)sin(θ)cos(θ)]相乘之后得到, A ( x C o s ( θ ) + y S i n ( θ ) , − x S i n ( θ ) + y C o s ( θ ) ) A(xCos(\theta)+ySin(\theta),-xSin(\theta)+yCos(\theta)) A(xCos(θ)+ySin(θ),xSin(θ)+yCos(θ))向量。

在这里插入图片描述
在这里插入图片描述
相当于对矩阵进行了旋转。

因为矩阵 [ c o s ( θ ) − s i n ( θ ) s i n ( θ ) c o s ( θ ) ] \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix} [cos(θ)sin(θ)sin(θ)cos(θ)]的秩是2,所以旋转之后的维度也是2维。

如果我们通过矩阵 [ 1 − 1 1 − 1 ] \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} [1111]进行变换:那么变换后的向量为: A ( x + y , − x − y ) A(x+y,-x-y) A(x+y,xy),变换后的图像为:
在这里插入图片描述
因此,此矩阵的「秩」为1。

我们通过矩阵 [ 0 0 0 0 ] \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} [0000]进行变换:
在这里插入图片描述
因此,此矩阵的「秩」为0。

所以,「秩」是图像经过矩阵变换之后的空间维度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值