第一章:函数与极限

一、映射

XY是两个非空集合,有法则f,对X集合中每个元素xY集合中都有唯一的元素y与之对应,那么f就叫一个映射,记作f:X\rightarrow Y。其中,X叫做像,Y叫做原像(即:像\rightarrow原像)。像X组成的集合叫做定义域D_{f},(其中D是Domain的简写),原像Y组成的集合叫做值域,记作,R_{f}(其中R是Range的简写)

映射是集合到集合之间的对应关系,你这个集合里面的元素是什么玩意儿都可以。

注意:

  • 1)映射组成的三要素:集合X、对应法则f、值域R_{f}。其中,X中的元素必须都能找到对应的,而Y中的元素不一定都能用上。如下图所示👇,X和它的值域R_{f}是都用上的,但是Y中有一部分元素没用上。
  • 2)X集合中的x所对应的元素y是唯一的。即:一个x不能对应多个y,但是多个x可以对应同一个y。如下图所示👇
  •  
  • 3)R_{f}包含于Y,但R_{f}不一定等于Y(就是说R_{f}有可能只是集合Y的一部分)

1、满射

如果Y中所有的元素都用上了,即:R_{f}\ =Y,就叫满射。

2、单射

前面讲到过,多个x对应一个y是允许的,而单射必须是不能对应多个,只能一个对一个,这就叫单射。即:若x_{1}\neq x_{2},则f(x_{1})\neq f(x_{2})

3、一一映射

既是单射,也是满射,就叫一一映射。(即:XY中所含的元素个数一样,且一一对应)

4、逆映射

假设fXY的一个单射,对于每一个y\in R_{f},都有唯一的x\in X与之对应,满足f(x)=yg:R_{f}\rightarrow X,记作f^{-1}D_{f^{-1}}=R_{f}R_{f^{-1}}=X

(注意,这里只要求单射,没要求满射,所以不能写成y\in Y,因为Y中可能有些元素没用上)

只有单射才有逆映射。

5、复合映射

假设有两个映射分别是g:X\rightarrow Y_{1} 和 f:Y_{2}\rightarrow Z,且Y_{1}\subset Y_{2}x\subset X,则有f[g(x)]\in Z,记作f\bigcirc g:X\rightarrow Z,其中R_{g}\subset D_{f},如下图👇所示

注意;复合函数中,复合的先后顺序不同,结果是不同的。

二、函数

假设D\subset R(其中D是定义域,这里R是实数集),存在映射f:D\rightarrow Ry=f(x)x\in D。其中x是自变量,y是因变量,D是定义域也可以写成D_{f}R是值域记作R_{f}=f(D)

注意:

1)函数是从数集到数集之间的映射(之前讲的映射是集合到集合之间的对应,这个集合元素可以是数,也可以是别的任何东西)

2)上面实数集R和定义域R的这两个R是不一样的。

3)f表示的是对应的规则,如果写成f(x)那就表示对应的函数值了。

构成函数的两要素:定义域D_{f}、对应规则f

问:为什么映射是三要素,而函数却只有两要素?

答:由于函数的值域一定会落在实数集R里面,所以就不用说了。

函数的三种表示方法:表格、图形、解析式(公式)

1、函数的几种特性

1)有界性

上界:设存在k_{1},使所有的f(x)\leqslant k_{1},则k_{1}f(x)x上的一个上界。也就是说,如果有别的数大于k_{1},则那个数也是f(x)x上的一个上界。所以,上界不唯一

下界:设存在k_{2},使所有的f(x)\geqslant k_{2},则k_{2}f(x)x上的一个下界。同理,下界也不唯一

有界:设存在正数M,使所有的\left | f(x) \right |\leqslant M(即:-M\leqslant f(x)\leqslant M),则f(x)是有界函数,Mf(x)的一个界。有界的充分必要条件是:既有上界,也有下界(即:有界\Leftrightarrow既有上界也有下界)。

无界:就是找不到一个正数M,使\left | f(x) \right |\leqslant M,则f(x)就是无界函数。

2)单调性

单调递增:若x_{1}< x_{2},则f(x_{1})< f(x_{2})

单调递减:若x_{1}< x_{2},则f(x_{1})> f(x_{2})

3)奇偶性

前提:定义域D关于原点对称

f(x)=f(-x),则函数为偶函数,函数图像关于y轴对称;

f(-x)=-f(x),则函数为奇函数,函数图像关于原点对称。

4)周期性

设存在正数l,使f(x+l)=f(x),则函数为周期函数,l就叫它的周期。注意:通常我们说的周期都是最小周期。

注意:并非每个周期函数都有最小周期。比如:函数D(x)=\left\{\begin{matrix} 1 & x\in Q\\ 0& x\in Q^{c} \end{matrix}\right. (Q为有理数,Q^{c}为无理数)中,任何正有理数都是它的周期(下面有证明),而且不存在最小的正有理数。

证明:

x为有理数时,则x加上任何正有理数r,结果都为有理数,所以有D(x)=D(x+r)=1

而当x为无理数时,则x加上任何正无理数r,结果都为无理数,所以有D(x)=D(x+r)=0

所以,任何正有理数r都是函数D(x)的周期,而又不存在最小的正有理数,所以函数D(x)不存在最小周期。

补充知识:

  • (1)0是有理数;
  • (2)0即不是正有理数,也不是负有理数;
  • (3)0即不是正数,也不是负数;
  • (4)0是偶数。

2、反函数(也叫逆函数)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值