排列矩阵生成DAG

def perm_to_matrix(perms):
    # perms[i] = j, P[i,j] = 1: means the i-th element before sorting is at the j-th position after sorting
    P = np.eye(len(perms), dtype=int)[perms]
    return P

def matrix_to_perm(P):
    # perms[i] = j, P[i,j] = 1: means the i-th element before sorting is at the j-th position after sorting
    perms = [np.where(row == 1)[0][0] for row in P]
    return perms

perm_i_to_j = np.random.permutation(num_nodes)
P = perm_to_matrix(perm_i_to_j)
causal_matrix = P.T @ adj_matrix @ P

# Equivalent to
# perm_j_to_i = matrix_to_perm(P.T)
# causal_matrix = adj_matrix[perm_j_to_i, :][:, perm_j_to_i]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值