Tensorflow2.0笔记 - 自定义Layer和Model

        本笔记主要记录如何在tensorflow中实现自定的Layer和Model。详细内容请参考代码中的链接。

import time
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics

tf.__version__
#关于自定义layer和自定义Model的相关介绍,参考下面的链接:
#https://tf.wiki/zh_hans/basic/models.html
#https://blog.csdn.net/lzs781/article/details/104741958


#自定义Dense层,继承自Layer
class MyDense(layers.Layer):
    #需要实现__init__和call方法
    def __init__(self, input_dim, output_dim):
        super(MyDense, self).__init__()
        self.kernel = self.add_weight(name='w', shape=[input_dim, output_dim], initializer=tf.random_uniform_initializer(0, 1.0))
        self.bias = self.add_weight(name='b', shape=[output_dim], initializer=tf.random_uniform_initializer(0, 1.0))

    def call(self, inputs, training=None):
        out = inputs@self.kernel + self.bias
        return out

#自定义Model,继承自Model
class MyModel(keras.Model):
    #需要实现__init__和call方法
    def __init__(self):
        super(MyModel, self).__init__()
        #自定义5层MyDense自定义Layer
        self.fc1 = MyDense(28*28, 256)
        self.fc2 = MyDense(256, 128)
        self.fc3 = MyDense(128, 64)
        self.fc4 = MyDense(64, 32)
        self.fc5 = MyDense(32, 10)

    def call(self, inputs, trainning=None):
        x = self.fc1(inputs) #会调用MyDense的call方法
        x = tf.nn.relu(x)
        x = self.fc2(x)
        x = tf.nn.relu(x)
        x = self.fc3(x)
        x = tf.nn.relu(x)
        x = self.fc4(x)
        x = tf.nn.relu(x)
        x = self.fc5(x)
        return x

customModel = MyModel()
customModel.build(input_shape=[None, 28*28])
customModel.summary()

运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

亦枫Leonlew

希望这篇文章能帮到你

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值