机器学习笔记 - 贝叶斯决策论

这篇博客介绍了贝叶斯定理及其在机器学习中的应用——贝叶斯决策论。内容包括条件概率、全概率公式、贝叶斯公式,并阐述了如何基于后验概率和误判损失来进行样本分类。
摘要由CSDN通过智能技术生成

贝叶斯定理

条件概率

条件概率是指两个事件 A B, A 已经发生的条件下, B发生的概率, 记为 P(B|A) , 显然:

P(B|A)=P(AB)P(A)

P(AB) 是指 A B同时发生的概率.

全概率公式

设样本空间为 S , A为E的事件, {B1,B2,...,Bn} S 的一个划分, 且P(Bi)>0,i={1,2,...,n}, 则:

P(A)=i=1mP(A|Bi)P(Bi)

贝叶斯公式

设样本空间为 S , A为E的事件, {B1,B2,...,Bn} S 的一个划分, 且P(Bi)>0,i={1,2,...,n}, 则:

P(Bi|A)=P(A|Bi)P(Bi)nj=1P(A|Bj)P(Bj),i=1,2,...,n

贝叶斯决策论(Bayesian Decision Theory)

贝叶斯决策是在概率论的框架下对样本进行分类的方法, 在所有相关概率都已知的理想情形下, 贝叶斯决策考虑基于这个概率和误判损失来对样本进行分类。
设有 N 种可能的类别, 即γ={c1,c2,...,cN}. λij 是将一个真实类别为 cj 的样本判为 cx 的损失。 基于后验概率可得将样本分类所产生的期望损失, 或者成为条件风险(Conditional Risk)

R(Ci|x)=j=1NλijP(cj|x)

于是, 我们的任务就是寻找判定准则 h , 令χγ 的分类条件分险 R(h)=Ex[R(h(x)|x] 最小. 此准则可以简化为对每个样本选择其条件风险最小的分类, 即:
h(x)=argmincλR(c|x)

h(x) 就是贝叶斯最优分类器。 R(h) 为贝叶斯风险(Bayes Risk), 1R(h) 反映了分类器的最优性能.
如果任务目标是最小化分类错误率, 则:
λij={0,1,if i = j;otherwise;

此时条件风险为
R(c|x)=1P(c|x)

所以,
h(x)=argmaxcγP(c|x)

基于贝叶斯定理, P(c|x)=P(x|c)P(c)P(x)
于是, 问题的关键就转变为如何从训练样本中获取 P(c) P(x|c)

Reference

  1. http://www.cnblogs.com/phoenixzq/p/3539619.html
  2. 概率论与数理统计 - 盛骤等, 高等教育出版社
  3. 机器学习 - 周志华, 清华大学出版社
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值