【神经网络与深度学习】循环神经网络基础

tokenization

tokenization:分词
每一个词语都是token
分词方法:转为单个词、转为多个词语

N-gram表示法

准备词语特征的方法
(把连续的N个词作为特征)
如 ”我爱你“——>[我,爱,你]
2-gram——[[我, 爱],[爱, 你]]

向量化

one-hot编码

每一个token都可以用一个N长度的向量表示,N为词空间不重复的词的个数

word embedding

使用浮点型的稠密向量表示token,向量通常为不同维度,向量里面每个值都是超参数,其初始值为随机生成的,之后会在训练过程中不断调整。
首先 把token用数字来表示,再把数字转换成向量。
token ——> num ——> vector

tokennumvector
词10[w11, w12,…,w1N]
词21[w21, w22,…,w2N]

在这里插入图片描述
api: nn.Embedding(词典大小, embedding的维度)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值