贝叶斯估计(概率密度函数的估计的参数方法)

接上一篇文章:最大似估计

贝叶斯估计:    参数估计   是最随机变量,根据观测数据对参数的分布进行估计,还要考虑先验分布

最大似然估计:  参数估计  是未知的,根据观测数据来估计  的值。

贝叶斯学习是把贝叶斯估计的原理应用于直接从数据对概率密度进行估计


开始我们今天的表演

一、贝叶斯估计

可以将概率密度函数参数估计问题看成是贝叶斯决策问题

                                           

  • 3
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值