NNDL 实验七 循环神经网络(3)LSTM的记忆能力实验

6.3 LSTM的记忆能力实验

长短期记忆网络(Long Short-Term Memory Network,LSTM)是一种可以有效缓解长程依赖问题的循环神经网络.LSTM 的特点是引入了一个新的内部状态(Internal State)c∈RD 和门控机制(Gating Mechanism).不同时刻的内部状态以近似线性的方式进行传递,从而缓解梯度消失或梯度爆炸问题.同时门控机制进行信息筛选,可以有效地增加记忆能力.例如,输入门可以让网络忽略无关紧要的输入信息,遗忘门可以使得网络保留有用的历史信息.在上一节的数字求和任务中,如果模型能够记住前两个非零数字,同时忽略掉一些不重要的干扰信息,那么即时序列很长,模型也有效地进行预测.
使用LSTM模型重新进行数字求和实验,验证LSTM模型的长程依赖能力。

LSTM 模型在第 t 步时,循环单元的内部结构如图所示.
在这里插入图片描述
6.3.1 模型构建
在本实验中,我们将使用第6.1.2.4节中定义Model_RNN4SeqClass模型,并构建 LSTM 算子.只需要实例化 LSTM 算,并传入Model_RNN4SeqClass模型,就可以用 LSTM 进行数字求和实验.
6.3.1.1 LSTM层
LSTM层的代码与SRN层结构相似,只是在SRN层的基础上增加了内部状态、输入门、遗忘门和输出门的定义和计算。这里LSTM层的输出也依然为序列的最后一个位置的隐状态向量。代码实现如下:

import torch
import torch.nn as nn
import torch.nn.functional as F
 
# 声明LSTM和相关参数
class LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, Wi_attr=None, Wf_attr=None, Wo_attr=None, Wc_attr=None,
                 Ui_attr=None, Uf_attr=None, Uo_attr=None, Uc_attr=None, bi_attr=None, bf_attr=None,
                 bo_attr=None, bc_attr=None):
        super(LSTM, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
 
        # 初始化模型参数
        if Wi_attr==None:
             Wi = torch.zeros(size=[input_size, hidden_size], dtype=torch.float32)
        else:
             Wi = torch.tensor(Wi_attr, dtype=torch.float32)
        self.W_i = torch.nn.Parameter(Wi)
 
        if Wf_attr==None:
             Wf = torch.zeros(size=[input_size, hidden_size], dtype=torch.float32)
        else:
             Wf = torch.tensor(Wf_attr, dtype=torch.float32)
        self.W_f = torch.nn.Parameter(Wf)
 
        if Wo_attr==None:
             Wo = torch.zeros(size=[input_size, hidden_size], dtype=torch.float32)
        else:
             Wo = torch.tensor(Wo_attr, dtype=torch.float32)
        self.W_o = torch.nn.Parameter(Wo)
 
        if Wc_attr==None:
            Wc = torch.zeros(size=[input_size, hidden_size], dtype=torch.float32)
        else:
            Wc = torch.tensor(Wc_attr, dtype=torch.float32)
        self.W_c = torch.nn.Parameter(Wc)
 
        if Ui_attr==None:
            Ui = torch.zeros(size=[hidden_size, hidden_size], dtype=torch.float32)
        else:
            Ui = torch.tensor(Ui_attr, dtype=torch.float32)
        self.U_i = torch.nn.Parameter(Ui)
        if Uf_attr == None:
            Uf = torch.zeros(size=[hidden_size, hidden_size], dtype=torch.float32)
        else:
            Uf = torch.tensor(Uf_attr, dtype=torch.float32)
        self.U_f = torch.nn.Parameter(Uf)
 
        if Uo_attr == None:
            Uo = torch.zeros(size=[hidden_size, hidden_size], dtype=torch.float32)
        else:
            Uo = torch.tensor(Uo_attr, dtype=torch.float32)
        self.U_o = torch.nn.Parameter(Uo)
 
        if Uc_attr == None:
            Uc = torch.zeros(size=[hidden_size, hidden_size], dtype=torch.float32)
        else:
            Uc = torch.tensor(Uc_attr, dtype=torch.float32)
        self.U_c = torch.nn.Parameter(Uc)
 
        if bi_attr == None:
            bi = torch.zeros(size=[1,hidden_size], dtype=torch.float32)
        else:
            bi = torch.tensor(bi_attr, dtype=torch.float32)
        self.b_i = torch.nn.Parameter(bi)
        if bf_attr == None:
            bf = torch.zeros(size=[1,hidden_size], dtype=torch.float32)
        else:
            bf = torch.tensor(bf_attr, dtype=torch.float32)
        self.b_f = torch.nn.Parameter(bf)
 
        if bo_attr == None:
            bo = torch.zeros(size=[1,hidden_size], dtype=torch.float32)
        else:
            bo = torch.tensor(bo_attr, dtype=torch.float32)
        self.b_o = torch.nn.Parameter(bo)
        if bc_attr == None:
            bc = torch.zeros(size=[1,hidden_size], dtype=torch.float32)
        else:
            bc = torch.tensor(bc_attr, dtype=torch.float32)
        self.b_c = torch.nn.Parameter(bc)
 
    # 初始化状态向量和隐状态向量
    def init_state(self, batch_size):
        hidden_state = torch.zeros(size=[batch_size, self.hidden_size], dtype=torch.float32)
        cell_state = torch.zeros(size=[batch_size, self.hidden_size], dtype=torch.float32)
        return hidden_state, cell_state
 
    # 定义前向计算
    def forward(self, inputs, states=None):
        # inputs: 输入数据,其shape为batch_size x seq_len x input_size
        batch_size, seq_len, input_size = inputs.shape
 
        # 初始化起始的单元状态和隐状态向量,其shape为batch_size x hidden_size
        if states is None:
            states = self.init_state(batch_size)
        hidden_state, cell_state = states
 
        # 执行LSTM计算,包括:输入门、遗忘门和输出门、候选内部状态、内部状态和隐状态向量
        for step in range(seq_len):
            # 获取当前时刻的输入数据step_input: 其shape为batch_size x input_size
            step_input = inputs[:, step, :]
            # 计算输入门, 遗忘门和输出门, 其shape为:batch_size x hidden_size
            I_gate = F.sigmoid(torch.matmul(step_input, self.W_i) + torch.matmul(hidden_state, self.U_i) + self.b_i)
            F_gate = F.sigmoid(torch.matmul(step_input, self.W_f) + torch.matmul(hidden_state, self.U_f) + self.b_f)
            O_gate = F.sigmoid(torch.matmul(step_input, self.W_o) + torch.matmul(hidden_state, self.U_o) + self.b_o)
            # 计算候选状态向量, 其shape为:batch_size x hidden_size
            C_tilde = F.tanh(torch.matmul(step_input, self.W_c) + torch.matmul(hidden_state, self.U_c) + self.b_c)
            # 计算单元状态向量, 其shape为:batch_size x hidden_size
            cell_state = F_gate * cell_state + I_gate * C_tilde
            # 计算隐状态向量,其shape为:batch_size x hidden_size
            hidden_state = O_gate * F.tanh(cell_state)
 
        return hidden_state
Wi_attr = [[0.1, 0.2], [0.1, 0.2]]
Wf_attr = [[0.1, 0.2], [0.1, 0.2]]
Wo_attr = [[0.1, 0.2], [0.1, 0.2]]
Wc_attr = [[0.1, 0.2], [0.1, 0.2]]
Ui_attr = [[0.0, 0.1], [0.1, 0.0]]
Uf_attr = [[0.0, 0.1], [0.1, 0.0]]
Uo_attr = [[0.0, 0.1], [0.1, 0.0]]
Uc_attr = [[0.0, 0.1], [0.1, 0.0]]
bi_attr = [[0.1, 0.1]]
bf_attr = [[0.1, 0.1]]
bo_attr = [[0.1, 0.1]]
bc_attr = [[0.1, 0.1]]
 
lstm = LSTM(2, 2, Wi_attr=Wi_attr, Wf_attr=Wf_attr, Wo_attr=Wo_attr, Wc_attr=Wc_attr,
                 Ui_attr=Ui_attr, Uf_attr=Uf_attr, Uo_attr=Uo_attr, Uc_attr=Uc_attr,
                 bi_attr=bi_attr, bf_attr=bf_attr, bo_attr=bo_attr, bc_attr=bc_attr)
 
inputs = torch.as_tensor([[[1, 0]]], dtype=torch.float32)
hidden_state = lstm(inputs)
print(hidden_state)

实验结果:

tensor([[0.0594, 0.0952]], grad_fn=<MulBackward0>)

将实现的结果进行打印显示:

# 这里创建一个随机数组作为测试数据,数据shape为batch_size x seq_len x input_size
batch_size, seq_len, input_size = 8, 20, 32
inputs = torch.randn(size=[batch_size, seq_len, input_size])
 
# 设置模型的hidden_size
hidden_size = 32
torch_lstm = nn.LSTM(input_size, hidden_size)
self_lstm = LSTM(input_size, hidden_size)
 
self_hidden_state = self_lstm(inputs)
torch_outputs, (torch_hidden_state, torch_cell_state) = torch_lstm(inputs)
 
print("self_lstm hidden_state: ", self_hidden_state.shape)
print("torch_lstm outpus:", torch_outputs.shape)
print("torch_lstm hidden_state:", torch_hidden_state.shape)
print("torch_lstm cell_state:", torch_cell_state.shape)

实验结果:

self_lstm hidden_state:  torch.Size([8, 32])
torch_lstm outpus: torch.Size([8, 20, 32])
torch_lstm hidden_state: torch.Size([1, 20, 32])
torch_lstm cell_state: torch.Size([1, 20, 32])

可以看到,自己实现的LSTM由于没有考虑多层因素,因此没有层次这个维度,因此其输出shape为[8, 32]。同时由于在以上代码使用Paddle内置API实例化LSTM时,默认定义的是1层的单向SRN,因此其shape为[1, 8, 32],同时隐状态向量为[8,20, 32].

接下来,我们可以将自己实现的LSTM与Paddle内置的LSTM在输出值的精度上进行对比,这里首先根据Paddle内置的LSTM实例化模型(为了进行对比,在实例化时只保留一个偏置,将偏置bih设置为0),然后提取该模型对应的参数,进行参数分割后,使用相应参数去初始化自己实现的LSTM,从而保证两者在参数初始化时是一致的。

在进行实验时,首先定义输入数据inputs,然后将该数据分别传入Paddle内置的LSTM与自己实现的LSTM模型中,最后通过对比两者的隐状态输出向量。代码实现如下:

torch.manual_seed(0)
 
# 这里创建一个随机数组作为测试数据,数据shape为batch_size x seq_len x input_size
batch_size, seq_len, input_size, hidden_size = 2, 5, 10, 10
inputs = torch.randn([batch_size, seq_len, input_size])
 
# 设置模型的hidden_size
torch_lstm = nn.LSTM(input_size, hidden_size, bias=True)
 
# 获取torch_lstm中的参数,并设置相应的paramAttr,用于初始化lstm
print(torch_lstm.weight_ih_l0.T.shape)
chunked_W = torch.split(torch_lstm.weight_ih_l0.T, split_size_or_sections=10, dim=-1)
chunked_U = torch.split(torch_lstm.weight_hh_l0.T, split_size_or_sections=10, dim=-1)
chunked_b = torch.split(torch_lstm.bias_hh_l0.T, split_size_or_sections=10, dim=-1)
 
Wi_attr = chunked_W[0]
Wf_attr = chunked_W[1]
Wc_attr = chunked_W[2]
Wo_attr = chunked_W[3]
Ui_attr = chunked_U[0]
Uf_attr = chunked_U[1]
Uc_attr = chunked_U[2]
Uo_attr = chunked_U[3]
bi_attr = chunked_b[0]
bf_attr = chunked_b[1]
bc_attr = chunked_b[2]
bo_attr = chunked_b[3]
self_lstm = LSTM(input_size, hidden_size, Wi_attr=Wi_attr, Wf_attr=Wf_attr, Wo_attr=Wo_attr, Wc_attr=Wc_attr,
                 Ui_attr=Ui_attr, Uf_attr=Uf_attr, Uo_attr=Uo_attr, Uc_attr=Uc_attr,
                 bi_attr=bi_attr, bf_attr=bf_attr, bo_attr=bo_attr, bc_attr=bc_attr)
 
# 进行前向计算,获取隐状态向量,并打印展示
self_hidden_state = self_lstm(inputs)
torch_outputs, (torch_hidden_state, _) = torch_lstm(inputs)
print("torch SRN:\n", torch_hidden_state.detach().numpy().squeeze(0))
print("self SRN:\n", self_hidden_state.detach().numpy())

实验结果:

torch.Size([10, 40])
torch SRN:
 [[ 0.05112649  0.00698039 -0.03931072  0.08884124  0.1154766  -0.13408035
   0.16033086  0.00135596 -0.063761   -0.2974773 ]
 [ 0.11241535  0.07274596  0.36305282 -0.0627713   0.01287347 -0.15761302
   0.22385654  0.01972566 -0.35233897 -0.20609131]
 [ 0.13069035 -0.03020173 -0.0636995   0.13535675  0.34181932 -0.11440605
   0.10832828  0.04234035  0.08991404 -0.15160468]
 [ 0.0727646   0.15715009  0.06807105  0.07414025  0.36294693 -0.06236503
  -0.11784356  0.00420525 -0.1500205   0.08434849]
 [ 0.07962178  0.01809997 -0.02799227 -0.09783129 -0.08596174 -0.13848482
   0.06129256  0.15295173 -0.14451739 -0.11927365]]
self SRN:
 [[ 0.0940564  -0.14659543 -0.14954016  0.20936163 -0.12826967  0.14749622
   0.00946941  0.1993472  -0.06859784 -0.2767597 ]
 [ 0.17217153  0.16705877 -0.05719084  0.14882174  0.10330292 -0.20432511
   0.13150844  0.03508793 -0.07331903 -0.06966008]]

可以看到,两者的输出基本是一致的。另外,还可以进行对比两者在运算速度方面的差异。代码实现如下:

import time
 
# 这里创建一个随机数组作为测试数据,数据shape为batch_size x seq_len x input_size
batch_size, seq_len, input_size = 8, 20, 32
inputs = torch.randn([batch_size, seq_len, input_size])
 
# 设置模型的hidden_size
hidden_size = 32
self_lstm = LSTM(input_size, hidden_size)
torch_lstm = nn.LSTM(input_size, hidden_size)
 
# 计算自己实现的SRN运算速度
model_time = 0
for i in range(100):
    strat_time = time.time()
    hidden_state = self_lstm(inputs)
    # 预热10次运算,不计入最终速度统计
    if i < 10:
        continue
    end_time = time.time()
    model_time += (end_time - strat_time)
avg_model_time = model_time / 90
print('self_lstm speed:', avg_model_time, 's')
 
# 计算torch内置的SRN运算速度
model_time = 0
for i in range(100):
    strat_time = time.time()
    outputs, (hidden_state, cell_state) = torch_lstm(inputs)
    # 预热10次运算,不计入最终速度统计
    if i < 10:
        continue
    end_time = time.time()
    model_time += (end_time - strat_time)
avg_model_time = model_time / 90
print('torch_lstm speed:', avg_model_time, 's')

实验结果:

self_lstm speed: 0.008161592483520507 s
torch_lstm speed: 0.0022827916675143773 s

6.3.1.2 模型汇总
在本节实验中,我们将使用6.1.2.4的Model_RNN4SeqClass作为预测模型,不同在于在实例化时将传入实例化的LSTM层。
6.3.2 模型训练
6.3.2.1 训练指定长度的数字预测模型
本节将基于RunnerV3类进行训练,首先定义模型训练的超参数,并保证和简单循环网络的超参数一致. 然后定义一个train函数,其可以通过指定长度的数据集,并进行训练. 在train函数中,首先加载长度为length的数据,然后实例化各项组件并创建对应的Runner,然后训练该Runner。同时在本节将使用4.5.4节定义的准确度(Accuracy)作为评估指标,代码实现如下:

import os
import random
import torch
import numpy as np
 
# 训练轮次
num_epochs = 500
# 学习率
lr = 0.001
# 输入数字的类别数
num_digits = 10
# 将数字映射为向量的维度
input_size = 32
# 隐状态向量的维度
hidden_size = 32
# 预测数字的类别数
num_classes = 19
# 批大小 
batch_size = 8
# 模型保存目录
save_dir = "./checkpoints"
 
# 可以设置不同的length进行不同长度数据的预测实验
def train(length):
    print(f"\n====> Training LSTM with data of length {length}.")
    np.random.seed(0)
    random.seed(0)
 
    # 加载长度为length的数据
    data_path = f"./datasets/{length}"
    train_examples, dev_examples, test_examples = load_data(data_path)
    train_set, dev_set, test_set = DigitSumDataset(train_examples), DigitSumDataset(dev_examples), DigitSumDataset(test_examples)
    train_loader = DataLoader(train_set, batch_size=batch_size)
    dev_loader = DataLoader(dev_set, batch_size=batch_size)
    test_loader = DataLoader(test_set, batch_size=batch_size)
    # 实例化模型
    base_model = LSTM(input_size, hidden_size)
    model = Model_RNN4SeqClass(base_model, num_digits, input_size, hidden_size, num_classes) 
    # 指定优化器
    optimizer = torch.optim.Adam(lr=lr, params=model.parameters())
    # 定义评价指标
    metric = Accuracy()
    # 定义损失函数
    loss_fn = torch.nn.CrossEntropyLoss()
    # 基于以上组件,实例化Runner
    runner = RunnerV3(model, optimizer, loss_fn, metric)
 
    # 进行模型训练
    model_save_path = os.path.join(save_dir, f"best_lstm_model_{length}.pdparams")
    runner.train(train_loader, dev_loader, num_epochs=num_epochs, eval_steps=100, log_steps=100, save_path=model_save_path)
 
    return runner

6.3.2.2 多组训练
接下来,分别进行数据长度为10, 15, 20, 25, 30, 35的数字预测模型训练实验,训练后的runner保存至runners字典中。

lstm_runners = {}
 
lengths = [10, 15, 20, 25, 30, 35]
for length in lengths:
    runner = train(length)
    lstm_runners[length] = runner

实验结果:

[Train] epoch: 492/500, step: 18700/19000, loss: 0.00142
[Evaluate]  dev score: 0.90000, dev loss: 0.5243
[Train] epoch: 495/500, step: 18800/19000, loss: 0.00108
[Evaluate]  dev score: 0.90000, dev loss: 0.50064
[Train] epoch: 497/500, step: 18900/19000, loss: 0.00104
[Evaluate]  dev score: 0.90000, dev loss: 0.48256
[Evaluate]  dev score: 0.90000, dev loss: 0.47586
[Train] Training done!

6.3.2.3 损失曲线展示
分别画出基于LSTM的各个长度的数字预测模型训练过程中,在训练集和验证集上的损失曲线,代码实现如下:

# 画出训练过程中的损失图
for length in lengths:
    runner = lstm_runners[length]
    fig_name = f"./images/6.11_{length}.pdf"
    plot_training_loss(runner, fig_name, sample_step=100)

在这里插入图片描述
如图展示了LSTM模型在不同长度数据集上进行训练后的损失变化,同SRN模型一样,随着序列长度的增加,训练集上的损失逐渐不稳定,验证集上的损失整体趋向于变大,这说明当序列长度增加时,保持长期依赖的能力同样在逐渐变弱. 同图6.5相比,LSTM模型在序列长度增加时,收敛情况比SRN模型更好。

【思考题1】LSTM与SRN实验结果对比,谈谈看法。(选做)
LSTM在序列长度较短以及较长时,准确率优于SRN(从测试集损失和训练集损失可以看出)。LSTM在序列长度较长时,比SRM收敛更稳定。本身LSTM的设计就是通过门控机制来解决SRN的长程依赖问题,即随着训练时间的加长以及网络层数的增多,很容易出现梯度爆炸或梯度消失,导致无法处理较长序列数据,从而无法获取长距离数据的信息。
6.3.3 模型评价
6.3.3.1 在测试集上进行模型评价
使用测试数据对在训练过程中保存的最好模型进行评价,观察模型在测试集上的准确率. 同时获取模型在训练过程中在验证集上最好的准确率,实现代码如下:

lstm_dev_scores = []
lstm_test_scores = []
for length in lengths:
    print(f"Evaluate LSTM with data length {length}.")
    runner = lstm_runners[length]
    # 加载训练过程中效果最好的模型
    model_path = os.path.join(save_dir, f"best_lstm_model_{length}.pdparams")
    runner.load_model(model_path)
 
    # 加载长度为length的数据
    data_path = f"./datasets/{length}"
    train_examples, dev_examples, test_examples = load_data(data_path)
    test_set = DigitSumDataset(test_examples)
    test_loader = DataLoader(test_set, batch_size=batch_size)
 
    # 使用测试集评价模型,获取测试集上的预测准确率
    score, _ = runner.evaluate(test_loader)
    lstm_test_scores.append(score)
    lstm_dev_scores.append(max(runner.dev_scores))
 
for length, dev_score, test_score in zip(lengths, lstm_dev_scores, lstm_test_scores):
    print(f"[LSTM] length:{length}, dev_score: {dev_score}, test_score: {test_score: .5f}")

实验结果:

Evaluate LSTM with data length 15.
Evaluate LSTM with data length 20.
Evaluate LSTM with data length 25
Evaluate LSTM with data length 30.
Evaluate LSTM with data length 35.
[LSTM] length: 10, dev_score: 0.94, test_score:  0.90000
[LSTM] length: 15, dev_score: 0.95, test_score:  0.96000
[LSTM] length: 20, dev_score: 0.93, test_score:  0.92000
[LSTM] length: 25, dev_score: 0.94, test_score:  0.89000
[LSTM] length: 30, dev_score: 0.96, test_score:  0.93000
[LSTM] length: 35, dev_score: 0.95, test_score:  0.93000

6.3.3.2 模型在不同长度的数据集上的准确率变化图
接下来,将SRN和LSTM在不同长度的验证集和测试集数据上的准确率绘制成图片,以方面观察。

import matplotlib.pyplot as plt
plt.plot(lengths, lstm_dev_scores, '-o', color='#e8609b',  label="LSTM Dev Accuracy")
plt.plot(lengths, lstm_test_scores,'-o', color='#000000', label="LSTM Test Accuracy")
 
#绘制坐标轴和图例
plt.ylabel("accuracy", fontsize='large')
plt.xlabel("sequence length", fontsize='large')
plt.legend(loc='lower left', fontsize='x-large')
 
fig_name = "./images/6.12.pdf"
plt.savefig(fig_name)
plt.show()

下图展示了LSTM模型与SRN模型在不同长度数据集上的准确度对比。随着数据集长度的增加,LSTM模型在验证集和测试集上的准确率整体也趋向于降低;同时LSTM模型的准确率显著高于SRN模型,表明LSTM模型保持长期依赖的能力要优于SRN模型.

在这里插入图片描述

【思考题2】LSTM与SRN在不同长度数据集上的准确度对比,谈谈看法。(选做)
随着数据集长度的增加,LSTM模型在验证集和测试集上的准确率整体也趋向于降低;同时LSTM模型的准确率显著高于SRN模型,表明LSTM模型保持长期依赖的能力要优于SRN模型。

6.3.3.3 LSTM模型门状态和单元状态的变化
LSTM模型通过门控机制控制信息的单元状态的更新,这里可以观察当LSTM在处理一条数字序列的时候,相应门和单元状态是如何变化的。首先需要对以上LSTM模型实现代码中,定义相应列表进行存储这些门和单元状态在每个时刻的向量。

# 声明LSTM和相关参数
class LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, Wi_attr=None, Wf_attr=None, Wo_attr=None, Wc_attr=None,
                 Ui_attr=None, Uf_attr=None, Uo_attr=None, Uc_attr=None, bi_attr=None, bf_attr=None,
                 bo_attr=None, bc_attr=None):
        super(LSTM, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
 
        # 初始化模型参数
        if Wi_attr==None:
             Wi=torch.zeros(size=[input_size, hidden_size], dtype=torch.float32)
        else:
             Wi = torch.tensor(Wi_attr, dtype=torch.float32)
        self.W_i = torch.nn.Parameter(Wi)
 
        if Wf_attr==None:
             Wf=torch.zeros(size=[input_size, hidden_size], dtype=torch.float32)
        else:
             Wf = torch.tensor(Wf_attr, dtype=torch.float32)
        self.W_f = torch.nn.Parameter(Wf)
 
        if Wo_attr==None:
             Wo=torch.zeros(size=[input_size, hidden_size], dtype=torch.float32)
        else:
             Wo = torch.tensor(Wo_attr, dtype=torch.float32)
        self.W_o =torch.nn.Parameter(Wo)
 
        if Wc_attr==None:
            Wc=torch.zeros(size=[input_size, hidden_size], dtype=torch.float32)
        else:
            Wc = torch.tensor(Wc_attr, dtype=torch.float32)
        self.W_c = torch.nn.Parameter(Wc)
 
        if Ui_attr==None:
            Ui = torch.zeros(size=[hidden_size, hidden_size], dtype=torch.float32)
        else:
            Ui = torch.tensor(Ui_attr, dtype=torch.float32)
        self.U_i = torch.nn.Parameter(Ui)
        if Uf_attr == None:
            Uf = torch.zeros(size=[hidden_size, hidden_size], dtype=torch.float32)
        else:
            Uf = torch.tensor(Uf_attr, dtype=torch.float32)
        self.U_f = torch.nn.Parameter(Uf)
 
        if Uo_attr == None:
            Uo = torch.zeros(size=[hidden_size, hidden_size], dtype=torch.float32)
        else:
            Uo = torch.tensor(Uo_attr, dtype=torch.float32)
        self.U_o = torch.nn.Parameter(Uo)
 
        if Uc_attr == None:
            Uc = torch.zeros(size=[hidden_size, hidden_size], dtype=torch.float32)
        else:
            Uc = torch.tensor(Uc_attr, dtype=torch.float32)
        self.U_c = torch.nn.Parameter(Uc)
 
        if bi_attr == None:
            bi = torch.zeros(size=[1,hidden_size], dtype=torch.float32)
        else:
            bi = torch.tensor(bi_attr, dtype=torch.float32)
        self.b_i = torch.nn.Parameter(bi)
        if bf_attr == None:
            bf = torch.zeros(size=[1,hidden_size], dtype=torch.float32)
        else:
            bf = torch.tensor(bf_attr, dtype=torch.float32)
        self.b_f = torch.nn.Parameter(bf)
        if bo_attr == None:
            bo = torch.zeros(size=[1,hidden_size], dtype=torch.float32)
        else:
            bo = torch.tensor(bo_attr, dtype=torch.float32)
        self.b_o = torch.nn.Parameter(bo)
        if bc_attr == None:
            bc = torch.zeros(size=[1,hidden_size], dtype=torch.float32)
        else:
            bc = torch.tensor(bc_attr, dtype=torch.float32)
        self.b_c = torch.nn.Parameter(bc)
 
    # 初始化状态向量和隐状态向量
    def init_state(self, batch_size):
        hidden_state = torch.zeros(size=[batch_size, self.hidden_size], dtype=torch.float32)
        cell_state = torch.zeros(size=[batch_size, self.hidden_size], dtype=torch.float32)
        return hidden_state, cell_state
 
    # 定义前向计算
    def forward(self, inputs, states=None):
        # inputs: 输入数据,其shape为batch_size x seq_len x input_size
        batch_size, seq_len, input_size = inputs.shape
 
        # 初始化起始的单元状态和隐状态向量,其shape为batch_size x hidden_size
        if states is None:
            states = self.init_state(batch_size)
        hidden_state, cell_state = states
 
        # 定义相应的门状态和单元状态向量列表
        self.Is = []
        self.Fs = []
        self.Os = []
        self.Cs = []
        # 初始化状态向量和隐状态向量
        cell_state = torch.zeros(size=[batch_size, self.hidden_size], dtype=torch.float32)
        hidden_state = torch.zeros(size=[batch_size, self.hidden_size], dtype=torch.float32)
 
        # 执行LSTM计算,包括:隐藏门、输入门、遗忘门、候选状态向量、状态向量和隐状态向量
        for step in range(seq_len):
            input_step = inputs[:, step, :]
            I_gate = F.sigmoid(torch.matmul(input_step, self.W_i) + torch.matmul(hidden_state, self.U_i) + self.b_i)
            F_gate = F.sigmoid(torch.matmul(input_step, self.W_f) + torch.matmul(hidden_state, self.U_f) + self.b_f)
            O_gate = F.sigmoid(torch.matmul(input_step, self.W_o) + torch.matmul(hidden_state, self.U_o) + self.b_o)
            C_tilde = F.tanh(torch.matmul(input_step, self.W_c) + torch.matmul(hidden_state, self.U_c) + self.b_c)
            cell_state = F_gate * cell_state + I_gate * C_tilde
            hidden_state = O_gate * F.tanh(cell_state)
            # 存储门状态向量和单元状态向量
            self.Is.append(I_gate.detach().numpy().copy())
            self.Fs.append(F_gate.detach().numpy().copy())
            self.Os.append(O_gate.detach().numpy().copy())
            self.Cs.append(cell_state.detach().numpy().copy())
        return hidden_state

接下来,需要使用新的LSTM模型,重新实例化一个runner,本节使用序列长度为10的模型进行此项实验,因此需要加载序列长度为10的模型。

# 实例化模型
base_model = LSTM(input_size, hidden_size)
model = Model_RNN4SeqClass(base_model, num_digits, input_size, hidden_size, num_classes) 
# 指定优化器
optimizer = torch.optim.Adam(lr=lr, params=model.parameters())
# 定义评价指标
metric = Accuracy()
# 定义损失函数
loss_fn = torch.nn.CrossEntropyLoss()
# 基于以上组件,重新实例化Runner
runner = RunnerV3(model, optimizer, loss_fn, metric)
 
length = 10
# 加载训练过程中效果最好的模型
model_path = os.path.join(save_dir, f"best_lstm_model_{length}.pdparams")
runner.load_model(model_path)

接下来,给定一条数字序列,并使用数字预测模型进行数字预测,这样便会将相应的门状态和单元状态向量保存至模型中. 然后分别从模型中取出这些向量,并将这些向量进行绘制展示。代码实现如下:

import seaborn as sns
import matplotlib.pyplot as plt
def plot_tensor(inputs, tensor,  save_path, vmin=0, vmax=1):
    tensor = np.stack(tensor, axis=0)
    tensor = np.squeeze(tensor, 1).T
 
    plt.figure(figsize=(16,6))
    # vmin, vmax定义了色彩图的上下界
    ax = sns.heatmap(tensor, vmin=vmin, vmax=vmax) 
    ax.set_xticklabels(inputs)
    ax.figure.savefig(save_path)
 
 
# 定义模型输入
inputs = [6, 7, 0, 0, 1, 0, 0, 0, 0, 0]
X = torch.as_tensor(inputs.copy())
X = X.unsqueeze(0)
# 进行模型预测,并获取相应的预测结果
logits = runner.predict(X)
predict_label = torch.argmax(logits, dim=-1)
print(f"predict result: {predict_label.numpy()[0]}")
 
# 输入门
Is = runner.model.rnn_model.Is
plot_tensor(inputs, Is, save_path="./images/6.13_I.pdf")
# 遗忘门
Fs = runner.model.rnn_model.Fs
plot_tensor(inputs, Fs, save_path="./images/6.13_F.pdf")
# 输出门
Os = runner.model.rnn_model.Os
plot_tensor(inputs, Os, save_path="./images/6.13_O.pdf")
# 单元状态
Cs = runner.model.rnn_model.Cs
plot_tensor(inputs, Cs, save_path="./images/6.13_C.pdf", vmin=-5, vmax=5)

在这里插入图片描述
【思考题3】分析LSTM中单元状态和门数值的变化图,并用自己的话解释该图。
当LSTM处理序列数据[6, 7, 0, 0, 1, 0, 0, 0, 0, 0]的过程中单元状态和门数值的变化图,其中横坐标为输入数字,纵坐标为相应门或单元状态向量的维度,颜色的深浅代表数值的大小。可以看到,当输入门遇到不同位置的数字0时,保持了相对一致的数值大小,表明对于0元素保持相同的门控过滤机制,避免输入信息的变化给当前模型带来困扰;当遗忘门遇到数字1后,遗忘门数值在一些维度上变小,表明对某些信息进行了遗忘;随着序列的输入,输出门和单元状态在某些维度上数值变小,在某些维度上数值变大,表明输出门在根据信息的重要性选择信息进行输出,同时单元状态也在保持着对文本预测重要的一些信息.
全面总结RNN(必做)
在这里插入图片描述

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值