实验九 前馈神经网络(5)

实验任务:基于前馈神经网络完成鸢尾花分类

1 小批量梯度下降法

        小批量梯度下降是指为了减小每次迭代的计算复杂度,在每次迭代时只采集一小部分样本,计算这组样本上损失函数的梯度并更新参数。上图中每组样本的数量K为批量大小,计算Bt子集上的每个样本损失函数的梯度进行平均,然后在进行参数更新,公式如下图所示: 

 2 数据处理

import numpy as np
import torch
import matplotlib.pyplot as plt
from nndl.dataset import load_data

data_x, data_y = load_data()
iris_first = []
iris_second = []
iris_third = []
for i in range(0, len(data_y)):
    if (data_y[i] == 0):
        iris_first.append(data_x[i, :].numpy())
    elif (data_y[i] == 2):
        iris_second.append(data_x[i, :].numpy())
    else:
        iris_third.append(data_x[i, :].numpy())
iris_first = torch.tensor(iris_first)
iris_second = torch.tensor(iris_second)
iris_third = torch.tensor(iris_third)

plt.scatter(iris_first[:, 0], iris_first[:, 1], c='b')
plt.scatter(iris_second[:, 0], iris_second[:, 1], c='y')
plt.scatter(iris_third[:, 0], iris_third[:, 1], c='g')
plt.legend(['iris versicolor', 'iris setosa', 'iris vlrglnica'])
plt.show()

         由于优化器为小批量随机梯度下降法,所以需要对数据进行随机分组,因此要构建数据迭代器(每个迭代过程中从全部数据集中获取一批指定数量的数据),原理如下图所示:

         

  1. 将数据集封装为Dataset类,传入一组索引值,根据索引从数据集合中获取数据
  2. 构建DataLoader类,需要指定数据批量的大小(K)和是否需要对数据进行乱序(shuffle),通过该类即可批量获取数据。

在pytorch中,使用torch.utils.data.Dataset类加载minibatch的数据,torch.utils.data.DataLoader API可以生成一个迭代器,其中通过设置batch_size参数来指定minibatch的长度,通过设置shuffle参数为True,可以在生成minibatch的索引列表时将索引顺序打乱。

数据读取类(IrisDataset)中“__getitem__”实现根据给定索引获取数据集中指定样本,并对样本进行数据处理。“__len__”实现返回数据集样本个数。

 利用DataLoader进行封装:

import torch
import numpy as np
import torch.utils.data
from nndl.dataset import load_data

class IrisDataset(torch.utils.data.Dataset):
    def __init__(self, mode='train', num_train=120, num_dev=15):
        super(IrisDataset, self).__init__()
        # 调用第三章中的数据读取函数,其中不需要将标签转成one-hot类型
        X, y = load_data(shuffle=True)
        if mode == 'train':
            self.X, self.y = X[:num_train], y[:num_train]
        elif mode == 'dev':
            self.X, self.y = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
        else:
            self.X, self.y = X[num_train + num_dev:], y[num_train + num_dev:]

    def __getitem__(self, idx):
        return self.X[idx], self.y[idx]

    def __len__(self):
        return len(self.y)

torch.manual_seed(12)
train_dataset = IrisDataset(mode='train')
dev_dataset = IrisDataset(mode='dev')
test_dataset = IrisDataset(mode='test')
# 打印训练集长度
print("length of train set: ", len(train_dataset))

# 批量大小
batch_size = 16

# 加载数据
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
dev_loader = torch.utils.data.DataLoader(dev_dataset, batch_size=batch_size)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size)

 3 模型构建

代码定义前馈神经网络中,self.fc1 = nn.Linear(input_size, hidden_size)定义了第一层全连接层,将输入特征映射到隐藏层,normal_(self.fc1.weight, mean=0.0, std=0.01)使用正态分布初始化第一层全连接层的权重,并设置偏置为1.0。

前向传播方法(forward)中首先调用第一层全连接层,然后应用Sigmoid激活函数,再通过第二层全连接层,最后返回输出结果。

# 模型构建
import torch.nn as nn
from torch.nn.init import constant_, normal_, uniform_

# 定义前馈神经网络
class Model_MLP_L2_V3(nn.Module):
    def __init__(self, input_size, output_size, hidden_size):
        super(Model_MLP_L2_V3, self).__init__()
        # 构建第一个全连接层
        self.fc1 = nn.Linear(input_size, hidden_size)
        normal_(self.fc1.weight, mean=0.0, std=0.01)
        constant_(self.fc1.bias, val=1.0)
        # 构建第二全连接层
        self.fc2 = nn.Linear(hidden_size, output_size)
        normal_(self.fc2.weight, mean=0.0, std=0.01)
        constant_(self.fc2.bias, val=1.0)
        # 定义网络使用的激活函数
        self.act = nn.Sigmoid()

    def forward(self, inputs):
        outputs = self.fc1(inputs)
        outputs = self.act(outputs)
        outputs = self.fc2(outputs)
        return outputs

fnn_model = Model_MLP_L2_V3(input_size=4, output_size=3, hidden_size=6)

4 完善Runner类

基于RunnerV2类进行完善实现了RunnerV3类,其中训练过程使用自动梯度计算,使用DataLoader加载批量数据,使用随机梯度下降法进行参数优化;模型保存时,使用state_dict方法获取模型参数;模型加载时,使用set_state_dict方法加载模型参数。

由于使用随机梯度下降法对参数优化,所以数据以批次的形式输入到模型中进行训练,那么评价指标计算也是分别在每个批次进行的,想要获得每个epoch整体的评价结果,需要对历史评价结果进行累积(定义Accuracy类实现该功能)。

Accuracy:Update方法中实现了对历史评价结果的累积功能,batch_correct和batch_count分别记录每个批次的预测正确的样本个数和预测总的样本个数,self.num_correct += batch_correctself.num_count += batch_count实现更新,记录训练集中预测正确的样本个数和总的样本个数。Accumulate方法中利用上述方法得到的num_correct和num_count计算总的指标。

# 完善Runner类
import torch

class Accuracy():
    def __init__(self, is_logist=True):
        """
        输入:
           - is_logist: outputs是logist还是激活后的值
        """

        # 用于统计正确的样本个数
        self.num_correct = 0
        # 用于统计样本的总数
        self.num_count = 0

        self.is_logist = is_logist

    def update(self, outputs, labels):
        """
        输入:
           - outputs: 预测值, shape=[N,class_num]
           - labels: 标签值, shape=[N,1]
        """

        # 判断是二分类任务还是多分类任务,shape[1]=1时为二分类任务,shape[1]>1时为多分类任务
        if outputs.shape[1] == 1:  # 二分类
            outputs = torch.squeeze(outputs, dim=-1)
            if self.is_logist:
                # logist判断是否大于0
                preds = torch.tensor((outputs >= 0), dtype=torch.float32)
            else:
                # 如果不是logist,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0
                preds = torch.tensor((outputs >= 0.5), dtype=torch.float32)
        else:
            # 多分类时,使用'paddle.argmax'计算最大元素索引作为类别
            preds = torch.argmax(outputs, dim=1)
            preds = torch.tensor(preds, dtype=torch.int64)

        # 获取本批数据中预测正确的样本个数
        labels = torch.squeeze(labels, dim=-1)
        batch_correct = torch.sum(torch.tensor(preds == labels, dtype=torch.float32)).numpy()
        batch_count = len(labels)

        # 更新num_correct 和 num_count
        self.num_correct += batch_correct
        self.num_count += batch_count

    def accumulate(self):
        # 使用累计的数据,计算总的指标
        if self.num_count == 0:
            return 0
        return self.num_correct / self.num_count

    def reset(self):
        # 重置正确的数目和总数
        self.num_correct = 0
        self.num_count = 0

    def name(self):
        return "Accuracy"

 RunnerV3类实现:

# RunnerV3类实现
class RunnerV3(object):
    def __init__(self, model, optimizer, loss_fn, metric, **kwargs):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.metric = metric  # 只用于计算评价指标

        # 记录训练过程中的评价指标变化情况
        self.dev_scores = []

        # 记录训练过程中的损失函数变化情况
        self.train_epoch_losses = []  # 一个epoch记录一次loss
        self.train_step_losses = []  # 一个step记录一次loss
        self.dev_losses = []

        # 记录全局最优指标
        self.best_score = 0

    def train(self, train_loader, dev_loader=None, **kwargs):
        # 将模型切换为训练模式
        self.model.train()

        # 传入训练轮数,如果没有传入值则默认为0
        num_epochs = kwargs.get("num_epochs", 0)
        # 传入log打印频率,如果没有传入值则默认为100
        log_steps = kwargs.get("log_steps", 100)
        # 评价频率
        eval_steps = kwargs.get("eval_steps", 0)

        # 传入模型保存路径,如果没有传入值则默认为"best_model.pdparams"
        save_path = kwargs.get("save_path", "best_model.pdparams")

        custom_print_log = kwargs.get("custom_print_log", None)

        # 训练总的步数
        num_training_steps = num_epochs * len(train_loader)

        if eval_steps:
            if self.metric is None:
                raise RuntimeError('Error: Metric can not be None!')
            if dev_loader is None:
                raise RuntimeError('Error: dev_loader can not be None!')

        # 运行的step数目
        global_step = 0

        # 进行num_epochs轮训练
        for epoch in range(num_epochs):
            # 用于统计训练集的损失
            total_loss = 0
            for step, data in enumerate(train_loader):
                X, y = data
                # 获取模型预测
                logits = self.model(X)
                y = torch.tensor(y, dtype=torch.int64)
                loss = self.loss_fn(logits, y)  # 默认求mean
                total_loss += loss

                # 训练过程中,每个step的loss进行保存
                self.train_step_losses.append((global_step, loss.item()))

                if log_steps and global_step % log_steps == 0:
                    print(
                        f"[Train] epoch: {epoch}/{num_epochs}, step: {global_step}/{num_training_steps}, loss: {loss.item():.5f}")

                # 梯度反向传播,计算每个参数的梯度值
                loss.backward()

                if custom_print_log:
                    custom_print_log(self)

                # 小批量梯度下降进行参数更新
                self.optimizer.step()
                # 梯度归零
                self.optimizer.zero_grad()

                # 判断是否需要评价
                if eval_steps > 0 and global_step > 0 and \
                        (global_step % eval_steps == 0 or global_step == (num_training_steps - 1)):

                    dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step)
                    print(f"[Evaluate]  dev score: {dev_score:.5f}, dev loss: {dev_loss:.5f}")

                    # 将模型切换为训练模式
                    self.model.train()

                    # 如果当前指标为最优指标,保存该模型
                    if dev_score > self.best_score:
                        self.save_model(save_path)
                        print(
                            f"[Evaluate] best accuracy performence has been updated: {self.best_score:.5f} --> {dev_score:.5f}")
                        self.best_score = dev_score

                global_step += 1

            # 当前epoch 训练loss累计值
            trn_loss = (total_loss / len(train_loader)).item()
            # epoch粒度的训练loss保存
            self.train_epoch_losses.append(trn_loss)

        print("[Train] Training done!")

    # 模型评估阶段,使用'paddle.no_grad()'控制不计算和存储梯度
    @torch.no_grad()
    def evaluate(self, dev_loader, **kwargs):
        assert self.metric is not None

        # 将模型设置为评估模式
        self.model.eval()

        global_step = kwargs.get("global_step", -1)

        # 用于统计训练集的损失
        total_loss = 0

        # 重置评价
        self.metric.reset()

        # 遍历验证集每个批次
        for batch_id, data in enumerate(dev_loader):
            X, y = data

            # 计算模型输出
            logits = self.model(X)
            y = torch.tensor(y, dtype=torch.int64)

            # 计算损失函数
            loss = self.loss_fn(logits, y).item()
            # 累积损失
            total_loss += loss

            # 累积评价
            self.metric.update(logits, y)

        dev_loss = (total_loss / len(dev_loader))
        dev_score = self.metric.accumulate()

        # 记录验证集loss
        if global_step != -1:
            self.dev_losses.append((global_step, dev_loss))
            self.dev_scores.append(dev_score)

        return dev_score, dev_loss

    # 模型评估阶段,使用'paddle.no_grad()'控制不计算和存储梯度
    @torch.no_grad()
    def predict(self, x, **kwargs):
        # 将模型设置为评估模式
        self.model.eval()
        # 运行模型前向计算,得到预测值
        logits = self.model(x)
        return logits

    def save_model(self, save_path):
        torch.save(self.model.state_dict(), save_path)

    def load_model(self, model_path):
        model_state_dict = torch.load(model_path)
        self.model.set_state_dict(model_state_dict)

5 模型训练

对RunnerV3进行实例化,并传入训练配置定义网络、优化器、损失函数、softmax+交叉熵和评价指标。训练150个eopch,实验中保存准确率最高的模型作为最佳模型,实验结果如下:

 可视化观察训练集损失和训练集loss变化情况:

 从输出结果可以看出准确率随着迭代次数增加逐渐上升,损失函数下降。

# 实例化
import torch.optim as opt
import torch.nn.functional as F

lr = 0.2
# 定义网络
model = fnn_model
# 定义优化器
optimizer = opt.SGD(lr=lr, params=model.parameters())
# 定义损失函数。softmax+交叉熵
loss_fn = F.cross_entropy
# 定义评价指标
metric = Accuracy(is_logist=True)
runner = RunnerV3(model, optimizer, loss_fn, metric)

# 启动训练
log_steps = 100
eval_steps = 50
runner.train(train_loader, dev_loader, num_epochs=150, log_steps=log_steps, eval_steps=eval_steps, save_path="best_model.pdparams")

# 可视化
import matplotlib.pyplot as plt

# 绘制训练集和验证集的损失变化以及验证集上的准确率变化曲线
def plot_training_loss_acc(runner, fig_name,
                           fig_size=(16, 6),
                           sample_step=20,
                           loss_legend_loc="upper right",
                           acc_legend_loc="lower right",
                           train_color="#e4007f",
                           dev_color='#f19ec2',
                           fontsize='large',
                           train_linestyle="-",
                           dev_linestyle='--'):
    plt.figure(figsize=fig_size)

    plt.subplot(1, 2, 1)
    train_items = runner.train_step_losses[::sample_step]
    train_steps = [x[0] for x in train_items]
    train_losses = [x[1] for x in train_items]

    plt.plot(train_steps, train_losses, color=train_color, linestyle=train_linestyle, label="Train loss")
    if len(runner.dev_losses) > 0:
        dev_steps = [x[0] for x in runner.dev_losses]
        dev_losses = [x[1] for x in runner.dev_losses]
        plt.plot(dev_steps, dev_losses, color=dev_color, linestyle=dev_linestyle, label="Dev loss")
    # 绘制坐标轴和图例
    plt.ylabel("loss", fontsize=fontsize)
    plt.xlabel("step", fontsize=fontsize)
    plt.legend(loc=loss_legend_loc, fontsize='x-large')

    # 绘制评价准确率变化曲线
    if len(runner.dev_scores) > 0:
        plt.subplot(1, 2, 2)
        plt.plot(dev_steps, runner.dev_scores,
                 color=dev_color, linestyle=dev_linestyle, label="Dev accuracy")

        # 绘制坐标轴和图例
        plt.ylabel("score", fontsize=fontsize)
        plt.xlabel("step", fontsize=fontsize)
        plt.legend(loc=acc_legend_loc, fontsize='x-large')

    plt.savefig(fig_name)
    plt.show()

plot_training_loss_acc(runner, 'fw-loss.pdf')

6 模型评价

使用测试集对在上述训练过程中保存的最佳模型进行评价,观察测试集上的准确率以及loss情况。

7 模型预测 

使用保存好的模型,对测试集中的某一个数据进行模型预测,观察模型效果:

# 模型预测
# 模型评价
score, loss = runner.evaluate(test_loader)
print("[Test] accuracy/loss: {:.4f}/{:.4f}".format(score, loss))
test_loader = iter(test_loader)
# 获取测试集中第一条数据
(X, label) = next(test_loader)
logits = runner.predict(X)
pred_class = torch.argmax(logits[0]).numpy()
label = label.numpy()[0]

# 输出真实类别与预测类别
print("The true category is {} and the predicted category is {}".format(label, pred_class))

 8 与实验四“基于Softmax回归完成鸢尾花分类”比较,谈谈自己的看法

对比两个实验结果可知对于鸢尾花分类问题,前馈神经网络的准确率要高于Softmax分类。

前馈神经网络具有更强的泛化能力,能够通过学习复杂的特征和模式来提高分类准确率,而Softmax回归的泛化能力较弱,但训练速度通常比前馈神经网络快。

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from matplotlib.colors import ListedColormap

iris = datasets.load_iris()  # 加载数据
list(iris.keys())  # 属性
X = iris["data"][:, (2, 3)]  # 花瓣长度, 花瓣宽度
y = iris["target"]
# 设置超参数multi_class为"multinomial",指定一个支持Softmax回归的求解器,默认使用l2正则化,可以通过超参数C进行控制
softmax_reg = LogisticRegression(multi_class="multinomial", solver="lbfgs", C=500, random_state=42)
softmax_reg.fit(X, y)
softmax_reg.predict([[5, 2]])  # 输出:array([2])
softmax_reg.predict_proba([[5, 2]])
x0, x1 = np.meshgrid(np.linspace(0, 8, 500).reshape(-1, 1), np.linspace(0, 3.5, 200).reshape(-1, 1))
X_new = np.c_[x0.ravel(), x1.ravel()]
y_proba = softmax_reg.predict_proba(X_new)
y_predict = softmax_reg.predict(X_new)
zz1 = y_proba[:, 1].reshape(x0.shape)
zz = y_predict.reshape(x0.shape)
plt.figure(figsize=(10, 4))
plt.plot(X[y == 2, 0], X[y == 2, 1], "g^", label="Iris virginica")
plt.plot(X[y == 1, 0], X[y == 1, 1], "bs", label="Iris versicolor")
plt.plot(X[y == 0, 0], X[y == 0, 1], "yo", label="Iris setosa")
custom_cmap = ListedColormap(['#fafab0', '#9898ff', '#a0faa0'])
plt.contourf(x0, x1, zz, cmap=custom_cmap)
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.legend(loc="center left", fontsize=14)
plt.axis([0, 7, 0, 3.5])
plt.show()
  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值